

PERIOD 4

MATHEMATICS

CHAPTER NUMBER:~8

CHAPTER NAME:~QUADRILATERALS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Toll Free: 1800 120 2316

PREVIOUS KNOWLEDGE TEST

1. ABCD is a parallelogram in which P and Q are the midpoints of opposite sides AB and CD. If AQ intersects DP at S and BQ intersects CP at R, show that APCQ is a parallelogram.

LEARNING OUTCOME:~

- 1. Students will be able to learn some more properties of parallelogram.
- 2. Students will be able to solve application sums on parallelogram.

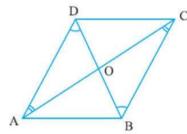
Theorem 8.6

The diagonals of a parallelogram bisect each other

Given: ABCD is a Parallelogram with

AC and BD diagonals & O is the

point of intersection of AC and BD



To Prove: OA = OC & OB = OD

<u>Proof</u>: Since, opposite sides of Parallelogram are parallel.

AD || BC

with transversal BD

∠ODA = ∠OBC (Alternate interior angles,

AD || BC

with transversal AC

∠OAD = ∠OCB (Alternate interior angles)

In △ AOD and △BOC

$$\angle OAD = \angle OCB$$
 (From (1))

$$\angle ODA = \angle OBC$$
 (From (2))

$$\triangle AOD \cong \triangle BOC$$
 (ASA rule)

So,

$$OA = OC$$
 & $OB = OD$ (CPCT)

Hence Proved

Theorem 8.7

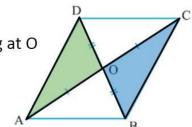
If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

Given: ABCD is a quadrilateral with

AC and BD are diagonals intersecting at O

Diagonals bisect each other

i.e. OA = OC & OB = OD



To Prove: ABCD is a parallelogram

Proof: In ΔAOD and ΔCOB

$$OA = OC$$

(Given)

(Vertically opposite angles)

$$OD = OB$$

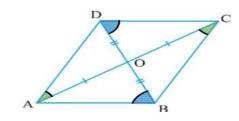
(Given)

$$\triangle$$
 AOD \cong \triangle COB

(SAS congruency)

$$\triangle$$
 AOD \cong \triangle COB

(CPCT) ...(1)



Similarly, we can prove

$$\triangle$$
 AOB \cong \triangle COD

(CPCT) ...(2)

For lines **AB and CD** with transversal BD,

∠ ABO & ∠CDO are alternate angles and are equal.

∴ Lines are parallel i.e. AB || CD

For lines **AD and BC** with transversal AC,

∠ OAD & ∠OCB are alternate angles and are equal.

 \therefore Lines are parallel i.e. AD \parallel BC

Thus, In ABCD,

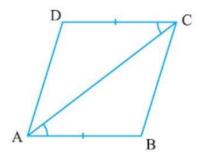
Both pairs of opposite sides are parallel,

 \therefore ABCD is a parallelogram

Theorem 8.8

A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel.

where AB || CD & AB = CD



To Prove: ABCD is a Parallelogram

Proof:

Given AB ∥ CD

with transversal AC.

$$\angle BAC = \angle DCA$$
 (Alternate angles) ...(1)

In Δ ADC & Δ CBA

$$AB = CD$$
 (Given)

$$\angle BAC = \angle DCA$$
 (From (1))

$$AC = CA$$
 (Common)

$$\therefore \triangle ADC \cong \triangle CBA$$
 (SAS Rule)

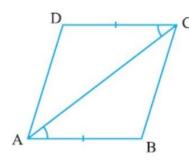
Hence,
$$DA = BC$$
 (CPCT)

Thus, In ABCD,

Both pairs of opposite sides are equal

∴ ABCD is a Parallelogram.

Hence proved



Diagonal AC of a parallelogram ABCD bisects ∠ A. Show that

...(1)

Ex 8.1, 6

Given: Parallelogram ABCD where $\angle 1 = \angle 2$

To prove: AC bisects ∠ C

Proof:

Now,

$$\angle 1 = \angle 2$$
 (Given)

$$\angle$$
 2 = \angle 3 AB || DC & AC as traversal, Alternate angles equal

Hence, we can say that

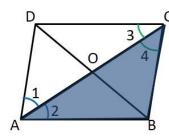
So, $\angle 3 = \angle 4$

Ex 8.1, 7

ABCD is a rhombus. Show that diagonal AC bisects \angle A as well as \angle C and diagonal BD bisects \angle B as well as \angle D.

Given:

Rhombus ABCD



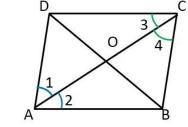
To prove:

- (i) AC bisects \angle A, i.e. \angle 1 = \angle 2 &
- bisects \angle C, i.e. \angle 3 = \angle 4
- (ii) BD bisects ∠ D & ∠ B

Proof:

In ∆ABC,

So,
$$\angle 4 = \angle 2$$
 (Angles opposite to equal sides are equal) ...(1)



Now, AB || DC (Opposite sides of rhombus are paralled) and transversal AC.

(Alternate angles)..(3) $\angle 2 = \angle 3$

(Alternate angles) ...(2) $\angle 1 = \angle 4$

From (1) & (2)

From (1) & (3)

 \Rightarrow AC bisects \angle A

Hence, AC bisects ∠ C & ∠ A

Similarly we can prove that BD bisects \angle B & \angle D

Hence proved

HOMEWORK ASSIGNMENT

Exercise 8.1 Question number 6,7

AHA

1.A diagonal of a parallelogram bisects one of its angles. Prove that it's a rhombus.

THANKING YOU ODM EDUCATIONAL GROUP

