

SETS

PERIOD 1

SUBJECT : MATHEMATICS CHAPTER NUMBER: 6 CHAPTER NAME : SETS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Learning outcome

Students will be able to know about sets and representation of a set.

Introduction

A set is a collection of objects, things or symbols which are clearly defined. The individual objects in a set are called the **members** or **elements** of the set.

Representation of a set

(Roster Method)

The set can be defined by listing all its elements, separated by commas and enclosed within braces. This is called the roster method.

Examples:

V = {a, e, i, o, u} B = {2, 4, 6, 8, 10} X = {a, b, c, d, e}

Set Builder Notation

The set can be defined by describing the elements using mathematical statements. This

is called the set-builder notation.

Examples:

 $C = \{x : x \text{ is an integer, } x > -3 \}$

This is read as: "C is the set of elements x such that x is an integer greater than -3."

 $D = \{x: x \text{ is the capital city of a state in the USA}\}$

Symbol ∈ and ∉

We should describe a certain property which all the elements *x*, in a set, have in common so that we can know whether a particular thing belongs to the set.
We relate a member and a set using the symbol ∈. If an object *x* is an element of set *A*, we write *x* ∈ *A*. If an object *z* is not an element of set *A*, we write *z* ∉ *A*.
∈ denotes "is an element of" or "is a member of" or "belongs to"
∉ denotes "is not an element of" or "is not a member of" or "does not belong to"
Example: If *A* = {1, 3, 5} then 1 ∈ *A* and 2 ∉ *A*

Exercise-6(A)

(<i>i</i>)	$A_1 = \{x : 2x + 3 = 11\}$
	2x + 3 = 11
⇒	2x = 11 - 3
⇒	2x = 8
⇒	$x = \frac{8}{2} \implies x = 4$
••	Given set in roster (Tabular) form is
	$A_1 = \{4\}$
(<i>ii</i>)	$A_2 = \{x : x^2 - 4x - 5 = 0\}$
	$x^2 - 4x - 5 = 0$
⇒	$x^2 - 5x + x - 5 = 0$
⇒	x(x-5) + 1(x-5) = 0
⇒	(x - 5) (x + 1) = 0
	Either $x - 5 = 0$ or $x + 1 = 0$
	$\Rightarrow x = 5 \Rightarrow x = -1$
÷.	Given set in roster (Tabular) form is
	$A_2 = \{5, -1\}$
(iii)	$A_3 = \{x : x \in \mathbb{Z}, -3 \le x < 4\}$
••	$-3 \le x < 4$
	x = -3, -2, -1, 0, 1, 2, 3
2.	Given set in roster (Tabular) form is
	$A_3 = \{-3, -2, -1, 0, 1, 2, 3\}$

set-builder (Rule Method) form :

(*i*) $B_1 = \{6, 9, 12, 15, \ldots\}$ $= \{x : x = 3n + 3; n \in \mathbb{N}\}$ (*ii*) $B_2 = \{11, 13, 17, 19\}$ $= \{x : x \text{ is a prime number between } \}$ 10 and 20} (*ii*) $B_3 = \left\{\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{7}{9}, \frac{9}{11}, \dots\right\}$ $= \{x : x = \frac{n}{n+2}, \text{ where } n \text{ is an odd} \}$ natural number} (iv) B₄ = {8, 27, 64, 125, 216} $= \{x : x = n^3 ; n \in \mathbb{N} \text{ and } 2 \le n \le$ 6} (v) $B_5 = \{-5, -4, -3, -2, -1\}$ $= \{x : x \in \mathbb{Z}, -5 \le x \le -1\}$ (vi) B₆ = {..., -6, -3, 0, 3, 6,} $= \{x : x = 3n, n \in \mathbb{Z}\}$

Exercise-6(A)

3) (i) Is {1, 2, 4, 16, 64} = {x : x is a factor of 32} ? Give reason.
(ii) Is {x : x is a factor of 27} ≠ {3, 9, 27, 54} ? Give reason.
(iii) Write the set of even factors of 124.
(iv) Write the set of odd factors of 72.

(i) No, $\{1, 2, 4, 16, 64\} \neq \{x : x \text{ is factor of } 32\}$ Sol: Because 64 is not a factor of 32 (ii) Yes, {x : x is a factor of 27} + {3, 9, 27, 54} Because 54 is not a factor of 27 (iii) 1 x 124 = 124 $2 \times 62 = 124$ $4 \times 31 = 124$ Factors of 124 = 1, 2, 4, 31, 62, 124 Set of even factors of 124 = {2, 4, 62, 124} (iv) 1 x 72 = 72 $2 \times 36 = 72$ $3 \times 24 = 72$ $4 \times 18 = 72$ $6 \times 12 = 72$ $8 \times 9 = 72$ Factors of 72 = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 Set of odd factors of 72 = {1, 3, 9}

Home assignment

Exercise 6(A)

AHA

1. Explain with an example of roster form of sets.

2. Explain with an example of set builder form of sets.

THANKING YOU ODM EDUCATIONAL GROUP

