| MATHEMATICS | STUDY NOTES [CLASS-VIII]

Chapter-1

RATIONAL NUMBERS

If p and q both are integers and $q \neq 0$, then $\frac{p}{q}$ is called a rational numbers.

For example : $\frac{-5}{7}$, $\frac{5}{7}$

Remember:

Zero (O) can be written as $\frac{0}{1}, \frac{0}{2}, \frac{0}{5}$ in each of these cases denominator is not 1.

equal to zero.

So, zero can be expressed as a fraction with a non-zero denominator.

.:. Zero (0) is a rational number.

- Every natural number, every whole number, every integer and every fraction is 2. a rational number.
- In the rational number $\frac{p}{q}$, where p and q are integers and $q \neq 0$, integer p is 3.

called numerator and integer q is called the denominator.

Properties of Addition of Rational Numbers

Closure Property 1.

Closure Property If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then their addition $\left(\frac{a}{b} + \frac{c}{d}\right)$ is also a

rational number.

Ex - $\frac{-3}{8} + \frac{5}{4} = \frac{1}{24}$, which is a rational number.

2. Commutativity

The addition of any two rational numbers is commutative.

According to commutative property of addition, if $\frac{a}{b}$ and $\frac{c}{d}$ are any two rational

numbers then : $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$

ODM Educational Group

[CLASS-VIII] | MATHEMATICS | STUDY NOTES

Ex- $\frac{5}{8} + \frac{-7}{12} = \frac{15}{24} + \frac{-14}{24} = \frac{15 - 14}{24} = \frac{1}{24}$ $\frac{-7}{12} + \frac{5}{8} = \frac{-14}{24} + \frac{15}{24} = \frac{-14 + 15}{24} = \frac{1}{24}$ $\therefore \frac{-7}{12} + \frac{5}{8} = \frac{5}{8} + \frac{-7}{12}$

3. Associativity

If $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ are any three rational numbers, then $\frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f}$.

4. Existence of additive identity of rational numbers.

Additive identity for rational numbers is zero (0).

5. Existence of additive inverse of a rational number.

The negative of a rational number is called its additive inverse.

Ex - The additive inverse of $\frac{3}{5} = -\frac{3}{5}$.

Properties of Subtraction of Rational Numbers

- (i) Rational Numbers are closed under subtraction.
- (ii) Subtraction of rational numbers is not commutative.
- (iii) The subtraction of rational numbers is not associative.
- (iv) Subtraction has no identity.
- (v) Inverse for substraction does not exist. Your Tomorrow

Properties Multification of Rational Numbers

(i) **Closer properties** : If any two rational numbers are multified together, the result is always a rational numbers.

(ii) Commutativity : If $\frac{a}{b}$ and $\frac{c}{d}$ are any two rational numbers then : $\frac{a}{b}x\frac{c}{d} = \frac{c}{d}x\frac{a}{b}$.

(iii) Associativity : If $\frac{a}{b}$, $\frac{c}{d}$ and $\frac{e}{f}$ are any three rational numbers, then

$$\frac{a}{b}x\left(\frac{c}{d}x\frac{e}{f}\right) = \left(\frac{a}{b}x\frac{c}{d}\right)x\frac{e}{f}$$

[CLASS-VIII] | MATHEMATICS | STUDY NOTES

(iv) Existence of multiplicative identity of rational numbers : Multiplicative identity is multiplied with any rational number or any rational number is multiplied with multiplicative identity, the rational number remains the same.

$$Ex - 1x\frac{a}{b} = \frac{a}{b}x1 = 1$$

(v) Existence of multiplicative inverse of rational numbers : The reciprocal of a rational number is called its multiplicative inverse.

Note : Rational number 0 (zero) does not have its multiplicative inverse.

(vi) Distributivity of multiplication over addition : The multiplication of rational numbers is distributive over their addition/subtraction.

If
$$\frac{a}{b}, \frac{c}{d}$$
 and $\frac{e}{f}$ are any three rational numbers, then

(i)
$$\frac{a}{b}x\left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b}x\frac{c}{d} + \frac{a}{b}x\frac{e}{f}$$

(ii) $\frac{a}{b}x\left(\frac{c}{d} - \frac{e}{f}\right) = \frac{a}{b}x\frac{c}{d} - \frac{a}{b}x\frac{e}{f}$

Properties of Division Of Rational Numbers

 Closure Property : If a rational number is divided by some non-zero rational number, the result is always a rational number.

Changing your Tomorrow

- 2. Commutativity : Division of two different rational numbers is not commutative.
- 3. Associativity : Division of rational numbers is not associative.
- 4. Identity for division of rational numbers does not exist.
- 5. Inverse for division of rational numbers does not exist.

Representation of Rational Numbers on the Number Line.

Draw a line of suitable length. Nearly at the middle of this line, mark a point O that represents number zero (0).

← _____ 0 1 0

ODM Educational Group

[CLASS-VIII] | MATHEMATICS | STUDY NOTES

Starting from O, mark points on this line at equal distances both on right as well as on left of O. Let A, B, C, D etc. be the points on the right side of O and A', B', C', D', etc. be the point on the left side of O so that :

$$OA = AB = BC = CD = \dots OA' = A'B' = B'C' = C'D' = \dots OA' = A'B' = B'C' = B'C' = B'A' = A'B' = B'C' = B'C' = B'A' = A'B' = B'C' = B'A' = B'C' = B'A' = B'C' = B'C' = B'A' = B'A' = B'C' = B'A' = B'C' = B'A' = B'C' = B'A' = B'A' = B'C' = B'A' = B'A$$

If OA = 1 unit

= A,B,C,D etc, represent integers 1,2,3,4,..... respectively and A', B', C', D'. etc, represent integers -1,-2,-3,-4 respectively.

Insetrting Rational Numbers Between Two given rational Numbers.

If a and b are two rational numbers, then $\frac{a+b}{2}$ is also a rational numbers and its

value lies between a and b.

If
$$a < b \Rightarrow a < \frac{a+b}{2} < b$$
 i.e., $5 < 8 \Rightarrow 5 < \frac{5+8}{2} < 8$ i.e., $5 < 6.5 < 8$

Note : For any two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, $\frac{a+c}{b+d}$ is also a rational number with its

Changing your Tomorrow 🖊

value lying between
$$\frac{a}{b}$$
 and $\frac{c}{d}$

ODM Educational Group