Chapter- 2

EXPONENTS

The numbers with negative exponents also obey the following laws:

(a)
$$x^m \times x^n = x^{m+n}$$

(b) $x^m \div x^n = x^{m-n}$
(c) $x^m \times b^m = (xb)^m$
(d) $x^0 = 1$
(e) $\frac{x^m}{y^m} = \left(\frac{x}{y}\right)^m$
(f) $\left(\frac{x}{y}\right)^n = \left(\frac{y}{x}\right)^{-n}$
(g) $\frac{1}{x} = x^{-1}$

(h)
$$x^p \times x^q \times x^r \times x^s = x^{p+q+r+s}$$

(i)
$$[(x^m)^n = x^{mn}]$$

A number is said to be in the standard form, if it is expressed as the product of a number between 1 and 10 and the integral power of 10. e.g., 149,600,000,000 = 1.496×10^{11}

Very small numbers can be expressed in standard form using negative exponents.

e.g., $0.0016 = 1610000 = 1.6 \times 10^{-3}$

If a is any non-zero integer and n is a positive integer, then $a \times a \times a \times ... \times a$ (n times) is written as a^n ,

i.e., aⁿ is the continued product of a multiplied by itself n times.

Here, 'a' is called the base and 'n' is called the 'exponent' or 'index'. The number aⁿ is read as 'a raised to the power of n' or simply as 'nth power of a'. The notation aⁿ is called the exponential notation or power notation.

ODM Educational Group

We can write large numbers more conveniently using exponents. For example: $10000 = 10^4$; $243 = 3^5$; $128 = 2^7$, etc. Now, we shall learn about negative exponents.

Powers With Negative Exponents

If a is any non-zero integer and m is a positive integer, then $a^{-m}=1/a^{m}$

Note: a^{-m} is called the multiplicative inverse of am as $a^{-m} \times a^m = 1$. It is obvious that am and a-m are multiplicative inverses of each other.

Remember

- $a^n = 1 \Rightarrow n = 0$
- 1ⁿ = 1 where n is any integer.
- (-1)ⁿ = 1 where n is any even integer.
- (-1)ⁿ = -1 where is any odd integer.

ODM Educational Group