Chapter-2

POLYNOMIALS

Introduction:-

- 1. Polynomial: An algebraic expression in the form of $a_0 + a_1x^1 + a_2x^2 + ... + a_n .x^n$ where $a_0, a_1, a_2, ..., a_n$ are real numbers, n is a non-negative integer and $a_n \neq 0$ is called a polynomial of degree n.
- 2. Degree of Polynomials: The highest power of (variable) x in a polynomial p(x) is called the degree of polynomial.
- 3. Types of Polynomial:
 - (a) Constant polynomial: a polynomial of degree zero is called a constant polynomial and it is of the form P(x)=k.
 - (b) Linear Polynomial: A polynomial of degree one is called linear polynomial and it is of the form P(x) = ax + b, where a, b are real numbers and $a \neq 0$.
 - (c) Cubic Polynomial: A polynomial of degree three is called cubic polynomial and it is of the form $P(x) = ax^3 + bx^2 + cx + d$, where a, b, c are real numbers and $a \neq 0$.
 - (d) Cubic polynomial: a polynomial of degree three is called cubic polynomial and it is of the form $P(x) = ax^3 + bx^2 + cx + d$ where a, b, c, d are real numbers and $a \neq 0$.
 - (e) Bi-quadratic polynomial: A polynomial of degree four is called Bi-quadratic polynomial or quadratic polynomial and it is of the form $P(x) = ax^4 + bx^3 + cx^2 + dx + e$, where a, b, c, d and e are real numbers and $a \neq 0$.
 - (f) Value of a polynomial: If p(x) is a polynomial in the form of $a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_nx^n$ with $a_n \neq 0$, then value of the polynomial p(x) for a real value at x = 0 will be given by

$$P(a) = a_{0} + a_{1} \times (a) + a_{2} \times (a)^{2} + a_{3} \times (a)^{3} + ... + a_{n} \times (a)^{n}.$$

(g) Zero of a polynomial: A number 'a' is said to be the zero of a polynomial p(x), if on replacing each x in the polynomial by 'a' the value of polynomial comes out to be zero.

Geometrical Representation of the zeros of a polynomial:-

Graph of a polynomial p(x) can be drawn in the coordinate plane with the help of table of values obtained from the equation y = p(x)

ODM Educational Group

Geometrical Representation of the zero of a linear polynomial:-

Consider a linear polynomial 2x - 5. It has one and only one zero 5/2. Let us drawn the graph of the equation y = 2x - 5. We known that it will be a straight line.

Table values

х	1	2
y = 2x - 5	-3	3

From the figure we observe that the graph of the equation y = 2x - 5 intersects the x - axis at the point $A\left(\frac{5}{2}, 0\right)$ whose x - coordinate is 5/2 and we also know that 5/2 is the only zero of the linear polynomial 2x - 5. By taking a few more illustration, we find the same situation. Therefore, we

conclude that the linear polynomial ax + b has one and only one zero which is the x-coordinate of the point where the graph of y = ax + b intersects the x-axis.

Geometrical Representation of the zeros of a Quadratic Polynomial:-

 $ax^{2} + bx + c$ is a quadratic polynomial when $a \neq 0$. Here, either a > or a < 0.

Case – 1, when a > 0, i.e coefficient of leading term is positive.

We consider a quadratic polynomial $x^2 - 4x + 3$. It has two zero, 1 and 3. Let us draw the graph of the equation $y = x^2 - 4x + 3$.

The graph of $y = x^2 - 4x + 3$ in figure is a parabola which is open the upward side, i.e an upward parabola. It is this like U.

Meets the x-axis in two points A (1, 0) and B (3, 0)

The x-coordinates of the points A (1, 0) and B (3,0) are 1 and 3 respectively, which are the zeros of the corresponding quadratic polynomial $x^2 - 4x + 3$. Similarly, we can draw the graphs of the equations $y = x^2 - 4x + 4$ and $y = x^2 - 2x + 5$ as shown below in figure.

In figure the graph of $y = x^2 - 4x + 4$, touches the x-axis at a single point A (2,3) whose x-coordinate is 2 and also 2 is a zero of the quadratic polynomial $x^2 - 4x + 4$. We observe that $x^2 - 4x + 4 = (x - 2)(x - 2)$ which gives two zeroes, each equal 2. Thus, a quadratic polynomial $ax^2 + bx + c$ having both zeros equal to same number.

In figure the graph of $y = x^2 - 2x + 5$, neither intersects nor touches the x-axis. It is an upward parabola above the x-axis. It means that the polynomial $x^2 - 2x + 5$ does not have any real zero.

Case – II, When the coefficient of the leading term of the quadratic polynomial $ax^2 + bx + c$ is negative, i.e a < 0.

As in case – I, we have three types of situation about the graph of the equation $y = ax^2 + bx + c$. In each situation, the graph is a downward parabola.

ODM Educational Group

In figure graph of the equation $y = ax^2 + bx + c$ is a downward parabola which intersects the x-axis at two points $A(x_1, 0)$ and $B(x_2, 0)$. Here, x_1, x_2 are two distinct real zeros of the quadratic polynomial $ax^2 + bx + c$

In figure graph of the equation $y = ax^2 + bx + c$ is a downward parabola which touches the x-axis at the point $A(x_1, 0)$. Here x_1 is a zero of the quadratic polynomial $ax^2 + bx + c$. Moreover, the two zeros of $ax^2 + bx + c$ are x_1 and x_1 , i.e, of same value.

In figure, graph of the equation $y = ax^2 + bx + c$ is a downward parabola which is below the x-axis. i.e neither intersects nor touches the x-axis. In this case the quadratic polynomial $ax^2 + bx + c$ does not have any real zero.

Remark:- Graph of $y = ax^2 + bx + c$ intersects the x-axis at most in two points and hence the quadratic polynomial can have at the most two distinct real zeros.

CDC

Geometric Representation of the zeros of a cubic polynomial

For a cubic polynomial $ax^3 + bx^2 + cx + d$, the equation $y = ax^3 + bx^2 + cx + d$ gives a graph which meets the x-axis at the most in three distinct points but it will certainly meet the x-axis atleast in one point. Thus, we conclude that a cubic polynomial $ax^3 + bx^2 + cx + d$ can have at most three distinct real zeros but atleast one real zero is certain. Now, we will learn these facts through some illustrative examples. **Concept – 2 Relationship between zeroes and coefficients of a polynomial:**-

SI. No.	Types of Polynomial	General Form	No. of Zeroes	Relationship between Zeroes	
1	Linear	$ax+b,a \neq 0$	1	$b_{k} = -b_{k} = -(Constant term)$	
				a Coefficient of x	
				Sum of zeroes	
2	Quadratic	$ax^2 + bx + c$, $a \neq 0$	2	$(\alpha + \beta) = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2} = -\frac{b}{a}$	
				Product of zeroes	
r	Cubic	$ax^3 + bx^2 + cx + d$. $a \neq 0$	3	$(\alpha\beta) = \frac{\text{Constant}}{\text{Coefficient of } x^2} = \frac{c}{a}$ Sum of zeroes	
		B AA		$(\alpha + \beta + \gamma) = -\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3} = -\frac{b}{a}$	
				Product of zeros	
				$(\alpha\beta\gamma) = -\frac{\text{Constant term}}{-\frac{1}{2}}$	
			En	$(\alpha p_{f})^{-1}$ Coefficient of x^{3} a	
			- (1	Sum of the product of zeroes taken 2 at a time	
				$(\alpha\beta + \beta\gamma + \gamma\alpha) = \frac{\text{Coefficient of } x}{\alpha\beta} = \frac{c}{\alpha\beta}$	
				Coefficient of x ³ a	

Formation of Polynomial when their zeroes are given:

SI. No.	Type of polynomial	Zeroes of polynomial	Sum and products of polynomial	Expression so obtained in the form of polynomial
1	C <mark>onstant</mark> Polynomial	There is no zeroes for such polynomial	Does not exist YOUr	p(x) = k or p(x) = c or any other constant number
2	Linear Polynomial	Say its zero is 'α' because linear polynomial has only one zero	Sum and product in this case is same i.e only $\boldsymbol{\alpha}$	$p(x)=k[x-\alpha]$
3	Quadratic polynomial	Let $\alpha \& \beta$ are its zeroes	Sum is $S' = \alpha + \beta$ Product $P = \alpha \times \beta$	$k \left[x^{2} - (\alpha + \beta)x + \alpha . \beta \right] $ Or K [x ² - (sum of zeroes) x + product of zeroes].
4	Cubic Polynomial	Let three zeroes are α, β, γ	(a) Sum of the zeroes $S = \alpha + \beta + r$ (b) Sum of zeroes taken 2 at a time say $S' = \alpha\beta + \beta r + r\alpha$ (c) Product of all three zeroes = $\alpha . \beta . \gamma$	$p(x) = k \begin{bmatrix} x^{3} - (\alpha + \beta + \gamma)x^{2} + \\ (\alpha\beta + \beta\gamma + \gamma\alpha)x + \alpha\beta.\gamma \end{bmatrix}$ Or $p(x) = k \begin{bmatrix} x^{3} - sx^{2} + s'x - p \end{bmatrix}$

ODM Educational Group