

Pure substances have a fixed composition.

[PURE SUBSTANCES & MIXTURES; SEPARATION OF	
MIXTURES	

Pure substances have a fixed density, melting point, boiling point physical and chemical properties

All elements are mostly pure substances. A few of them include gold, copper, oxygen, chlorine, diamond, etc.

Characteristics of compounds:

A compound is formed by mixing two or more elements in a fixed ratio by mass. For example, water is formed by mixing hydrogen and oxygen in the fixed ratio of 1:8 by mass.

The properties of a compound are entirely different from the properties of its constituents.

For example, oxygen supports combustion and hydrogen is an inflammable gas, while water is neither combustible nor does it support combustion.

Whenever a compound is formed, it releases or absorbs heat. For example, when nitrogen and hydrogen combines to form ammonia, it releases a lot of heat.

- Since a compound is a pure substance, it will have fixed melting and boiling points. For example, ice melts at 0°C, while water boils at 100°C.
- The constituents of a compound cannot be separated using simple physical methods.

For example, water cannot be reduced to hydrogen and oxygen just by heating or filtering.

Compounds such as water, salt or crystals, baking soda amongst others are also grouped as pure substances

Substances

Pure substances find uses in several industries. They can be used in medicines, chemicals, scientific research and experiments.

Substances may be separated from mixtures.

All solutions are mixtures but all mixtures are not solutions.

Mixtures

Matter generally exists as mixtures of two or more pure components or substances

Characteristics of a mixture:

Elements and compounds just mix to form a mixture, no chemical reaction.

- Composition variable.
- Retains properties of constituents, which can be separated by physical means.

Mixtures may be homogeneous or heterogeneous.

Differences between substances and mixtures

~ r

Properties	Pure substances	Mixtures	
Made of	Atoms or molecules.	Made of elements or compounds or both.	
Composition	Compounds have fixed composition. The elements are always present in a definite proportion. E.g. sodium chloride will always contain one atom of sodium chemically bound to one atom of chlorine irrespective of its source.	A mixture does not have a definite composition. The percentage of each substance in a mixture can vary.	
Physical properties	Fixed boiling and melting points.	No definite properties. Boiling point and melting point will depend on the amounts of the constituents present in the mixture.	
	Changing your Tomorrow		

| CHEMISTRY | STUDY NOTES

Chemical properties	Properties of compounds are different from the properties of its constituent elements. E.g. Water is a liquid while hydrogen and oxygen are gases.	Components are loosely held together and they retain their individual properties	
Formation	Formation of a compound is accompanied by energy change in the form of heat, light, sound or color.	Formation of the mixture does not involve any energy change.	
Separation	Cannot be broken down into constituents by physical means. Chemical processes are needed.	Can be easily separated into its components by physical means.	
Appearance	Characteristic taste, smell, odor.	Take the appearance of the components.	
Uniformity	Always homogeneous.	Can be homogeneous or heterogeneous.	
Examples	Lead, gold, silver, aluminum (elements). Carbon dioxide, ammonia, water,	Salt solution, sugar solution, alloys like bronze and brass, milk, air, honey	
	onanging your		
ODM Educational Gr	Page 5		

calcium carbonate (compounds).

(homogeneous mixtures.

Chalk in water, dust in air, Sulphur and iron filings, soil (heterogeneous mixture).

SEPARATION OFMIXTURES

The process of separating the ingredients of a mixture from one another so as to obtain pure substances is known as separation of mixtures.

Uses of separation of mixtures

> To remove impurities.

Example: Rice and cereals may have small stones, husk or soil particles which must be removed before cooking.

To get useful substances.

Examples: 1. Salt is obtained from sea water which is a mixture.

2. Petrol, diesel and kerosene are obtained from crude petroleum oil which is a

mixture of several different compounds.

To obtain pure substances.

Example: Distilled water from tap water.

| CHEMISTRY | STUDY NOTES

SEPARATION OF SOLID- SOLID MIXTURES

Process	Principle	Examples
Hand-picking	Based on the difference in size and appearance of components. Can be used only for substances that are large enough to be seen.	Removing stones from rice, rotten fruits from a basket of fruits.
	Based on the difference in mass of components.	V/
Winnowing	Lighter solids can be blown away by the wind	Separation of rice from the husk.
EDUCA	while heavier particles settle down.	GROUF

| CHEMISTRY | STUDY NOTES

	Sieving	Based on the difference in size of components. The smaller ones pass through the sieve and the larger ones remain in the sieve.	Separation of: Impurities from flour. Sand from stones in construction sites. Coins of different sizes.	
	Magnetic separation	Based on the principle that one component is magnetic and is attracted by a magnet while the other is not.	Iron filings from sand or sulphur, metal scrap from garbage.	
Sublimation		Based on the principle that one component can pass directly into vapour phase when heated and can be collected by condensing the vapours. One component remains in solid state.	For separating mixture of sand and iodine (iodine is sublime), mixture of common salt and ammonium chloride (ammonium chloride is sublime), for obtaining pure	

ODM Educational Group

WI INT

IMILIN

54.1

			camphor.
Solvent extraction	n	Based on the principle that one component is soluble in water while the other is not.	Separating mixture of sand and salt. Salt dissolves in water while sand settles down.
Separation of sol Process	id-liquid mi Principle	ixtures	Examples
SedimentationBased on the difference in density of components. Heavier particles settle down and liquid is transferred to another container.			Separating sand and water.
Filtration The filter will allow only liquid to pa through and will retain the solid.			Removing tea leaves from tea, sawdust from water.
	10	Changing your	Tomorrow

| CHEMISTRY | STUDY NOTES

		Removing chalk particles from water.	
Evaporation	One component can move integration of the second state on heating while other remains in the solid form	o the Salt from salt water. n.	
Crystallisation	solvent. Copper sulphate crystals from its solution.		
Separation of miscible liquids		NN	
Process	Principle	Examples	
Distillation	Based on the principle that pure substances have fixed boiling points and can be condensed from vapour form.	Acetone from water, alcohol from water, distilled water from tap water.	

1	Centrifugation	Based on the difference in density of components. Heavier particles settle down and light particles float on top.		Separating cream from milk, remove water drops from wet clothes in washing machines, separating RBCs from plasma to do blood tests.	
	Separation of im	miscible liquids			
	Process		Principle	N	Examples
Separating funnel		Based onthe difference indensity of twoKerosene fromliquids. Lighter onewater, oil fromfloats on top andwater.heavier one settlesown.		Kerosene from water, oil from water.	
-DUCATIONAL GROUP					
Changing your Tomorrow					

METHODS OF SEPARATION OF MIXTURES

ODM Educational Group

| CHEMISTRY | STUDY NOTES

methyl and ethyl

kerosene and water

