

## **POLYNOMIALS**

PPT-5

**SUBJECT: MATHEMATICS** 

**CHAPTER NUMBER: 02** 

**CHAPTER NAME: POLYNOMIALS** 

**CHANGING YOUR TOMORROW** 

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316** 

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

## **Learning outcome**

- > 1.Students will be able to know Division algorithm for polynomials
- 2. Students will be able to establish relationship among dividend, divisior, quotient and the remainder.
- 3. .Students will be able to find the remaining zeroes of a polynomial when some of its zeroes are given.



### PREVIOUS KNOWLEDGE TEST

Division algorithm for polynomials.

p(x) and g(x) are any two polynomials with  $g(x) \neq 0$ , then we can find polynomials q(x) and r(x) such that  $p(x) = g(x) \times q(x) + r(x)$ , where r(x) = 0 or degree of r(x) < degree of g(x)...This result is known as division algorithm for polynomials.



- Find all the zeroes of polynomial  $2x^4 9x^3 + 5x^2 + 3x 1$  if two of its zeors are  $2 + \sqrt{3}$  and  $2 \sqrt{3}$ ;
  - https://youtu.be/GPyeOXKoKGs



Find all zeroes of the polynomial 
$$(2x^4 - 9x^3 + 5x^2 + 3x - 1)$$
 if two of its zeroes are  $(2 + \sqrt{3})$  and  $(2 - \sqrt{3})$ .

Sol. Since,  $(2 + \sqrt{3})$  and  $(2 - \sqrt{3})$  are the two zeroes of the given polynomial  $2x^4 - 9x^3 + 5x^2 + 3x - 1$ . Then  $\{x-(2+\sqrt{3})\}\{x-(2-\sqrt{3})\}$ 

For other zeroes: 
$$2x^2 - x - 1 = 0$$
  
 $(x-1)(2x+1)=0$   
 $\therefore x-1=0 \text{ or } 2x+1=0$   
 $\Rightarrow x=1 \text{ or } 2x=-1 \Rightarrow x=\frac{-1}{2}$   
Therefore, other zeroes are 1 and  $\frac{-1}{2}$ .



Obtain all other zeroes of 3x4 +6x3 -2x2 -10x -5,if two of its zeros are -  $\sqrt{5}/\sqrt{3}$  and  $\sqrt{5}/\sqrt{3}$ 

https://youtu.be/Oej2izbKZhU



. Obtain all other zeroes of 
$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
, if two of its zeroes are  $\sqrt{\frac{5}{3}}$  and  $-\sqrt{\frac{5}{3}}$ .

Polynomial is 
$$3x^4 + 6x^3 - 2x^2 - 10x - 5 = p(x)$$
 (say)

Its two zeroes are  $\sqrt{\frac{5}{3}}$  and  $-\sqrt{\frac{5}{3}}$ .

$$\therefore x = \sqrt{\frac{5}{3}} \text{ and } x = -\sqrt{\frac{5}{3}}.$$

Now 
$$x - \sqrt{\frac{5}{3}} = 0$$
 and  $x + \sqrt{\frac{5}{3}} = 0$ .

On multiplying we have  $x^2 - \frac{5}{3} = 0$ 

$$3x^2 - 5 = 0.$$

$$g(x) = 3x^2 - 5$$

On dividing 
$$p(x)$$
 by  $g(x)$ 

$$x^{2} + 2x + 1$$

$$3x^{2} - 5 ) 3x^{4} + 6x^{3} - 2x^{2} - 10x - 5$$

$$- 5x^{2}$$

$$- 6x^{3} + 3x^{2} - 10x - 5$$

$$- 6x^{3} - 10x$$

$$- 3x^{2} - 5$$

$$- 3x^{2} - 5$$

$$- \frac{3x^{2} - 5}{- 0}$$

Hence, 
$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
  
=  $(3x^2 - 5)(x^2 + 2x + 1)$   
For zeroes,  $3x^2 - 5 = 0$  or  $x^2 + 2x + 1 = 0$   
Other zeroes are

$$x^{2} + 2x + 1 = 0$$

$$x^{2} + x + x + 1 = 0$$

$$x(x+1) + 1(x+1) = 0$$

$$(x+1)(x+1) = 0$$

$$x = -1, -1.$$



:HOME ASSIGNMENT - Ex. 2.3 Q. No 3 to 4.

#### AHA

- 1.If the zeroes of the polynomial  $x^3 3x^2 + x + 1$  are a b, a + b, find a and b..
- 2. If two zeroes of the polynomial  $x^4 6x^3 26x^2 + 138x 35$  are  $2 \pm \sqrt{3}$  find other zeroes.



# THANKING YOU ODM EDUCATIONAL GROUP

