

## **QUADRATIC EQUATIONS**

## PPT2

## SUBJECT: MATHEMATICS CHAPTER NUMBER: 04 CHAPTER NAME : QUADRATIC EQUATIONS

### CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

## PREVIOUS KNOWLEDGE TEST

## **Quadratic Equation**

When we equate a quadratic polynomial to a constant, we get a quadratic equation.

Any equation of the form  $p(x) = ax^2+bx+c$ , where p(x) is a polynomial of degree 2 and c is a constant, is a quadratic equation.

## The standard form of a Quadratic Equation

The standard form of a quadratic equation is  $ax^2+bx+c=0$ , where a,b and c are real numbers and  $a\neq 0$ .

'a' is the coefficient of  $x^2$ . It is called the quadratic coefficient. 'b' is the coefficient of x. It is called the linear coefficient. 'c' is the constant term.



## **LEARNING OUTCOME**

1.Students will be able to find Solutions of a quadratic equation by factorization

3. Students will be able to represent situations in the form of Quadratic Equations and hence find Solutions .



### **Roots of a Quadratic equation**

The values of x for which a quadratic equation is satisfied are called the roots of the quadratic equation.

If  $\alpha$  is a root of the quadratic equation  $ax^2 + bx + c=0$ , then  $a\alpha^2 + b\alpha + c=0$ .

: https://youtu.be/UtReXKgmQ10(4.11)



#### • Solving a Quadratic Equation by Factorization method

• Consider a quadratic equation  $2x^2-5x+3=0$ 

 $\Rightarrow 2x^2 - 2x - 3x + 3 = 0$ 

This step is splitting the middle term

We split the middle term by finding two numbers (-2 and -3) such that their sum is equal to the coefficient of x and their product is equal to the product of the coefficient of  $x^2$  and the constant.

And 
$$(-2) \times (-3) = 6$$

$$\Rightarrow$$
 2 x <sup>2</sup>-2x -3x +3=0

$$\Rightarrow$$
 2x (x -1)-3(x -1)=0

$$\Rightarrow$$
 (x -1)(2 x -3)=0

In this step, we have expressed the quadratic polynomial as a product of its factors.

Thus, x = 1 and x = 3/2 are the roots of the given quadratic equation.

This method of solving a quadratic equation is called the factorization method.



: Find the roots of the quadratic equation  $6x^2 - x - 2 = 0$ . Solution : We have  $6x^2 - x - 2$ =  $6x^2 + 3x - 4x - 2$ = 3x(2x + 1) - 2(2x + 1)= (3x - 2)(2x + 1)The roots of  $6x^2 - x - 2 = 0$  are the values of x for which (3x - 2)(2x + 1) = 0Therefore, 3x - 2 = 0 or 2x + 1 = 0, i.e., x = 2/3 or x = -1/2 Therefore, the roots of  $6x^2 - x - 2 = 0$  are 2/3 and -1/2We verify the roots, by checking that 2/3 and -1/2 satisfy  $6x^2 - x - 2 = 0$ 



Find the roots of the quadratic equation 
$$3x^2 - 2\sqrt{6} x + 2 = 0$$
.  
Solution :  $3x^2 - 2\sqrt{6} x + 2$   
 $= 3x^2 - \sqrt{6} x - \sqrt{6} x + 2$   
 $= \sqrt{3}x(\sqrt{3} x - \sqrt{2}) - \sqrt{2}(\sqrt{3} x - \sqrt{2})$   
 $= (\sqrt{3} x - \sqrt{2})(\sqrt{3} x - \sqrt{2})$   
So, the roots of the equation are the values of x for which  
 $(\sqrt{3} x - \sqrt{2})(\sqrt{3} x - \sqrt{2}) = 0$   
Now,  $\sqrt{3} x - \sqrt{2} = 0$  for  $x = \sqrt{\frac{2}{3}}$ .  
So, this root is repeated twice, one for each repeated factor  $\sqrt{3} x - \sqrt{2}$ .  
Therefore, the roots of  $3x^2 - 2\sqrt{6} x + 2 = 0$  are  $\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$ .



. Find the roots of the following quadratic equations by factorization (ii)  $2 x^2 + x - 6 = 0$ (v)  $100 x^2 - 20 x + 1 = 0$ 



# (ii) We have, $2x^{2} + x - 6 = 0 \implies 2x^{2} + 4x - 3x - 6 = 0$ $\implies 2x (x + 2) - 3(x + 2) = 0 \implies (x + 2) (2x - 3) = 0$ If x + 2 = 0 then x = -2If 2x - 3 = 0 then $x = \frac{3}{2}$ Hence, the roots of the equation $2x^{2} + x - 6 = 0$ are -2 and $\frac{3}{2}$ .



$$\begin{array}{l} 100x^2 - 20x + 1 = 0 \quad \Rightarrow \ 100x^2 - 10x - 10x + 1 = 0 \\ \Rightarrow \ 10x(10x - 1) - 1(10x - 1) = 0 \quad \Rightarrow \ (10x - 1) \ (10x - 1) = 0 \\ \Rightarrow \qquad (10x - 1)^2 = 0 \quad \Rightarrow \qquad x = \frac{1}{10} \\ \end{array}$$
Hence, both the roots of equation  $100x^2 - 20x + 1 = 0$  are  $\frac{1}{10}, \frac{1}{10}$ .



| <i>5</i> . | Solve for x          | $: \frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x} \qquad (a \neq a)$ | $=0, b \neq 0, x$ | $\neq 0$ )                                                  |
|------------|----------------------|---------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|
| SOLUTION.  | We have,             |                                                                                 |                   |                                                             |
|            |                      | $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$                     | $\Rightarrow$     | $\frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ |
|            | $\Rightarrow$        | $\frac{x - (a+b+x)}{x(a+b+x)} = \frac{a+b}{ab}$                                 |                   |                                                             |
|            | ⇒                    | $\frac{-(a+b)}{x(a+b+x)} = \frac{(a+b)}{ab}$                                    |                   | (Cancelling $(a + b)$ from both sides)                      |
|            | ⇒                    | $-\frac{1}{x(a+b+x)} = \frac{1}{ab}$                                            | $\Rightarrow$     | -x(a+b+x) = ab                                              |
|            | $\Rightarrow$        | $x\left(a+b+x\right)+ab=0$                                                      | $\Rightarrow$     | $x^2 + ax + bx + ab = 0$                                    |
|            | $\Rightarrow$        | x(x+a) + b(x+a) = 0                                                             | $\Rightarrow$     | (x+a)(x+b)=0                                                |
|            | $\Rightarrow$ Either | x + a = 0                                                                       | $\Rightarrow$     | x = -a                                                      |
|            | or                   | x + b = 0                                                                       | $\Rightarrow$     | x = -b                                                      |
|            | Hence, $x = -$       | -a and $x = -b$                                                                 |                   |                                                             |
|            |                      |                                                                                 |                   |                                                             |



### HOME ASSIGNMENT Ex. 4.2 Q. No 1 to Q2

 $\mathsf{AHA}$ 

- 1. If 1 is a root of the equations  $ay^2 + ay + 3 = 0$  and  $y^2 + y + b = 0$ , then find the value of ab.
- 2. If x = -1/2, is a solution of the quadratic equation  $3x^2 + 2kx 3 = 0$ , find the value of k.



## THANKING YOU ODM EDUCATIONAL GROUP

