INTRODUCTION Every matter is made up of very tiny particles called atoms. Molecules are formed from atoms. Atoms and molecules are too small to be seen through naked eye. They can only be seen through a powerful microscope. Let us know about atoms and molecules in details. ## **AN ATOM** - ➤ The word atom comes from the word "atomos" meaning 'indivisible' coined by a Greek philosopher Democritus. - ➤ John Dalton in the year 1808 suggested that an atom is the basic unit of matter. - An atom is defined as the smallest particle of an element that may or may not exist independently but still shows all the properties of that element and takes part in every chemical reaction. - ➤ For Example: - On crushing a zinc piece, even the smallest piece of the Zinc metal shows the properties of the zinc. - ➤ In other words, "An Atom is the smallest possible unit of an element" # CHARACTERISTICS OF ATOM AS SUGGESTED BY JOHN DALTON - An atom is the smallest particle of matter which cannot be divided further into smaller particles. - Atoms of the same element are identical but they differ from the atoms of the other elements. - An atom of an element exhibits all the properties of that element. - Atoms can neither be created nor destroyed. - Atoms may or may not have independent existence but they can take part in chemical reaction. ## A MOLECULE A molecule is the smallest particle of an element or compound which exist independently and exhibits all the properties of that element or compound. Molecule can also be defined as the group of two or more atoms that are chemically bonded together by attractive forces. ## Molecules are of two types: - - Molecule of an Element - Molecule of a Compound #### ATOMICITY Atomicity is defined as the number of atoms of an element join together to form a molecule is known as the Atomicity of that molecule. Depending on the Atomicity, the molecule of elements can be divided into: - - Monoatomic Molecules - Diatomic Molecules - Triatomic Molecules - Polyatomic Molecules ## MONOATOMIC MOLECULE - The molecule that contains only one atom are Monoatomic molecule. - Examples of Monoatomic Molecules are: Na, Zn, Mg, and Noble gases like He, Ne, Ar, and Xe etc. IONAL GROU Changing your Tomorrow ## **DIATOMIC MOLECULE** - The molecule that contains two atoms are Diatomic molecule. - Examples of Diatomic Molecules are: H₂, N₂, O₂, Cl₂ etc. #### TRIATOMIC MOLECULE The molecule that contains three atoms are Triatomic molecule. • Examples of Triatomic Molecules are: - O₃ (ozone) ## **POLYATOMIC MOLECULE** - The molecule that contains more than three atoms are Polyatomic molecule. - Examples of Monoatomic Molecules are: P4 (Phosphorus) and S8 (Sulphur) ## **MOLECULAR FORMULA OF AN ELEMENT** - Molecular formula of an element is defined as the symbolic representation of its molecule. - For Example, Cl₂ is the molecular formula of Chlorine gas consists of two atoms of Chlorine. - For example, two atoms of Hydrogen and one atom of oxygen forms a molecule of Water. | NAME OF THE | SYMBOLS OF | ATOMICITY | STATE | |-------------|-----------------|---------------------|--------| | ELEMENT | MOLECULES | SINVY! | | | Hydrogen | H ₂ | 2 | Gas | | Nitrogen | N ₂ | ² A (- | Gas | | Oxygen | O ₂ | aina your T | Gas | | Fluorine | F ₂ | 2 rig your i | Gas | | Chlorine | Cl ₂ | 2 | Gas | | Bromine | Br ₂ | 2 | Liquid | | lodine | l ₂ | 2 | Solid | | Ozone | Оз | 3 | Gas | | Phosphorous | P ₄ | 4 | Solid | | Sulphur | S ₈ | 8 | Solid | ## **MOLECULES OF COMPOUNDS** - ➤ When atoms of two or more elements join together in a fixed ratio by mass, a molecule of a compound is formed. - ➤ For Example, two atoms of Hydrogen and one atom of oxygen combine to form a molecule of water. - ➤ The smallest unit of a compound is its molecule. - ➤ Molecules of different compounds show different properties. For Example, Water molecule and Sugar molecules are different from each other ## **RADICALS** - A Radical is an atom of an element or a group of atoms of different elements that behaves like a single unit. - Radicals are of two types: - - Basic Radical: They have positive charge and are also called Cations. - Acid Radical: They have negative charge and are also called Anions. Some of the Positive Radicals are given below: - | Name of Radical | Representation | Valency | |-----------------|------------------|---------| | Hydrogen | H+ | 1 | | Sodium | Na+ | 1 | | Potassium | K* | 1 | | Silver | Ag* | 1 | | Ammonium | NH4* | 2 | | Magnesium | Mg ²⁺ | 2 | | Calcium | Ca ²⁺ | 2 | | Zinc | Zn²+ | 2 | | Iron(II) | Fe ²⁺ | 2 | | Gold | Au ²⁺ | 2 | | Copper(II) | Cu ²⁺ | 2 | | Iron(III) | Fe³+ | 3 | | Aluminium | Al3+ | 3 | | Tin(I∨) | Sn ⁴⁺ | 4 | | Platinum(IV) | Pt ⁴⁺ | 4 | | | | | | Name of Radical | Representation | Valency | | |-----------------|--|---------|--| | Chloride | CI- | 1 | | | Bromide | Br ⁻ | 1 | | | Hydroxide | OH- | 1 | | | Acetate | CH₃COO⁻ | 1 | | | Nitrate | NO ₃ - | 1 | | | Nitrite | NO ₂ - | 1 | | | Bisulphate | HSO ₄ - | 1 | | | Bisulphite | HSO₃⁻ | 1 | | | Bicarbonate | HCO₃⁻ | 1 | | | Oxide | O ²⁻ | 2 | | | Carbonate | CO ₃ 2- | 2 | | | Sulphate | SO ₄ 2- | 2 | | | Sulphite | SO3 ²⁻ | 2 | | | Dichromate | Cr ₂ O ₇ ²⁻ | 2 | | | Nitrite | N ³⁻ | 3 | | | Phosphate | PO ₄ 3- | 3 | | | FDIIC | ATIONAL | GROUP | | ## Valency Valence electrons are those electrons which are present in the outermost orbit of the atom. - The capacity of an atom to lose, gain or share valence electrons in order to complete its octet determines the valency of the atom. - Examples: The valency of hydrogen is one - In hydrogen chloride molecule (HCl) one atom of chlorine combines with one atom of hydrogen, hence valency of chlorine is 1 # Variable Valency • Some elements show more than one valency or simply variable valency. - The suffix *ous* is used for the lower valency and the suffix *ic* is used for the higher valency - For example, IRON (II) is known as Ferrous with valency 2 and IRON (III) is known as Ferric with valency 3. ## RELATIONSHIP BETWEEN VALENCY OF ELEMENTS AND PERIODIC TABLE - Periodic Table is a tabular arrangement of elements in vertical columns and horizontal rows indicating the regular trends in the properties of elements. - The table consists of 118 elements known to us. - These elements are arranged in 18 vertical columns called groups and 7 horizontal rows called periods according to the IUPAC system. | | Valence Electrons in Each | | | | | | | | | | | | | | | | | |---|---------------------------|-------|--|--|--|--|--|--|--|--|---------|---|---|---|---|---|---| | 1 | | Group | | | | | | | | | | | 2 | | | | | | 1 | 2 | I | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 8 | | 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | | | | | | • | | | | | | | | | | | | | | | _ | \perp | | | | | | | | NAME OF THE ELEMENT | SYMBOL | VALENCY | |---------------------|--------|---------| | Hydrogen | Н | 1 | | Helium | He | 0 | | Lithium | Li | 1 | | Beryllium | Ве | 2 | | Boron | В | 3 | | Carbon | С | 4 | | Nitrogen | N | 3 | | Oxygen | 0 | 2 | | Fluorine | F | 1 | | Neon | Ne | 0 | | Sodium | Na | 1 | # [ATOMS, MOLECULES AND RADICALS] | CHEMISTRY | STUDY NOTES | Magnesium | Mg | 2 | |-------------|----|---| | Aluminium | Al | 3 | | Silicon | Si | 4 | | Phosphorous | Р | 3 | | Sulphur | S | 2 | | Chlorine | CI | 1 | | Argon | Ar | 0 | | Potassium | К | 1 | | Calcium | Ca | 2 | ## **SYMBOLS OF ELEMENTS** | 1 - Hydrogen H | 21 - Scandium Sc | 41 - Niobium Nb | |------------------------------|-------------------------|----------------------------| | 2 - Helium He | 22 - Titanium Ti | 42 - Molybdenum Mo | | 3 - Lithium Li | 23 - Vanadium V | 43 - Technetium Tc | | 4 - Beryllium Be | 24 - Chromium Cr | 44 - Ruthenium Ru | | 5 - Boron B | 25 - Manganese Mn | 45 - Rhodium Rh | | 6 - Carbon C | 26 - Iron (Ferrum) Fe | 46 - Palladium Pd | | 7 - Nitrogen N | 27 - Cobalt Co | 47 - Silver (Argentum) Ag | | 8 - Oxygen O | 28 - Nickel Ni | 48 - Cadmium Cd | | 9 - Fluorine F | 29 - Copper (Cuprum) Cu | 49 - Indium In | | 10 - Neon Ne | 30 - Zinc Zn | 50 - Tin (Stannum) Sn | | 11 - Sodium (Natrium) Na | 31 - Gallium Ga | 51 - Antimony (Stibium) St | | 12 - Magnesium Mg | 32 - Germanium Ge | 52 - Tellurium Te | | 13 - Aluminium (Aluminum) Al | 33 - Arsenic As | 53 - lodine I | | 14 - Silicon Si | 34 - Selenium Se | 54 - Xenon Xe | | 15 - Phosphorus P | 35 - Bromine Br | 55 - Caesium (Cesium) Cs | | 16 - Sulfur S | 36 - Krypton Kr | 56 - Barium Ba | | 17 - Chlorine Cl | 37 - Rubidium Rb | 57 - Lanthanum La | | 18 - Argon Ar | 38 - Strontium Sr | 58 - Cerium Ce | | 19 - Potassium (Kalium) K | 39 - Yttrium Y | 59 - Praseodymium Pr | | 20 - Calcium Ca | 40 - Zirconium Zr | 60 - Neodymium Nd | # **MOLECULAR FORMULA** - A Molecular formula of a compound is the symbolic representation of its (one) molecule. - It shows the number of atoms of each element present in it. The atoms combine in whole numbers to form the molecules. - For Example: A molecule of Sulphur Dioxide gas is represented by SO₂. It indicates that one molecule of SO₂ is formed by an atom of sulphur and two atoms of Oxygen. ## WRITING A CHEMICAL FORMULA OF A COMPOUND To write the chemical formula, the following steps must be followed. - 1. Write the Symbols - 2. Interchange the valence number - 3. Write the valency of the symbols. - 4. Write the interchanged numbers at the base. - 5. Write the formula of the compound For example, the step wise method for writing the formula of CALCIUM OXIDE is given below #### CALCIUM OXIDE Step 1: Write the symbols and valencies. | Sym | bols | |---------|-------| | Calcium | Oxide | | Ca | 0 | | Valer | ncies | |---------|-------| | Calcium | Oxide | | 2+ | 2- | Similarly, Formulas like Magnesium oxide, Calcium nitride, zinc hydroxide and Aluminium carbonate can be written by CRISS-CROSS method. ## SIGNIFICANCE OF MOLECULAR FORMULA - It represents one molecule of a compound. - The number of each kind of atoms present, i.e., the ratio in which the atoms are present in one molecule. - The mass of one molecule of the compound can be calculated. - Molecular mass is the algebraic sum of the masses of all the atoms present in a given molecule. - Molecular mass of H₂O (water) can be calculated $$(2X1) + (1X16) = 18$$ Units • For example, in Sulphuric acid (H₂SO₄), the ratio of hydrogen, Sulphur and oxygen is 2:1:4 | NAME OF THE COMPOUNDS | FORMULA | STATE | |---|---|--------| | Common Salt (Sodium
Chloride) | NaCl | Solid | | 2. Sugar | C ₁₂ H ₂₂ O ₁₁ | Solid | | 3. Glucose | C ₆ H ₁₂ O ₆ | Solid | | Baking Soda (Sodium bicarbonate) | NaHCO₃ | Solid | | Washing Soda (Sodium carbonate) | Na ₂ CO ₃ .10H ₂ O | Solid | | 6. Marble & Chalk (Calcium carbonate) | CaCO₃ | Solid | | 7. Sand (Silica) | SiO ₂ | Solid | | 8. Calcium Hydroxide (slaked lime) | Ca (OH) ₂ | Solid | | Sodium hydroxide (Caustic Soda) | NaOH | Solid | | 10. Copper Sulphate (Blue
Vitriol) | CuSO ₄ | Solid | | 11. Water | H ₂ O | Liquid | | 12. Acetic Acid (Vinegar) | CH₃COOH | Liquid | | 13. Hydrochloric Acid | HClaina vou | Liquid | | 14. Sulphuric Acid | H ₂ SO ₄ | Liquid | | 15. Nitric Acid | HNO₃ | Liquid | | 16. Carbon Dioxide | CO ₂ | Gas | | 17. Carbon Monoxide | CO | Gas | | 18. Sulphur dioxide | SO ₂ | Gas | | 19. Sulphur trioxide | SO ₃ | Gas | | 20.Ammonia | NH ₃ | Gas | | 21. Hydrogen sulphide | H ₂ S | Gas | | 22. Nitrogen dioxide | NO ₂ | Gas | | 23. Nitric oxide (nitrogen monoxide) | NO | Gas | Molecular formulae, the common names and the state of some common compounds ODM Educational GroupPage 11 [ATOMS, MOLECULES AND RADICALS] | CHEMISTRY | STUDY NOTES | 24. Nitrous oxide (Laughing Gas) | N ₂ O | Gas | |----------------------------------|-------------------------------|-----| | 25. Phosphorous pentoxide | P ₂ O ₅ | Gas |