

PERIOD 4

MATHEMATICS

CHAPTER NUMBER :~ 7 CHAPTER NAME :~ TRIANGLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

• 1. In \triangle PQR the sides QP and RP have been produced to S and T such that PQ=PS and PR=PT. Prove that the segment QR|ST.

LEARNING OUTCOME:~

1.Students will be able to solve the sums based on ASA and AAS congruence rule.

ABC and DBC are two isosceles triangles on the same base BC (see the given figure). Show that $\angle ABD = \angle ACD$.

ABC and DBC are two isosceles triangles on the same base BC (see the given figure). Show that $\angle ABD = \angle ACD$.

<u>To prove</u>: \angle ABD = \angle ACD

Proof

Let us join AD.

We take $\triangle ABD$ and $\triangle ACD$,

		A	
In $\triangle ABD$ and \triangle	ACD,	\wedge	
AB = AC	(From (1))		1
BD = CD	(From (2))		
AD = AD	(Common)		
$\therefore \Delta ABD \cong \Delta AC$	CD (SSS congruence rule)		~
⇒ ∠ABD = ∠A	CD (CPCT)	D	
Hence proved			

C

 \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that \angle BCD is a right angle.

 \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that \angle BCD is a right angle.

D

D

Hence proved

Show that the angles of an equilateral triangle are 60° each.

Show that the angles of an equilateral triangle are 60° each.

Given:

 ΔABC be an equilateral triangle.

∴ AB = BC = AC (All sides of equilateral triangle are equal)

To prove: $\angle A = \angle B = \angle C = 60^{\circ}$

Proof:

AB = AC

 $\Rightarrow \angle C = \angle B \qquad (Angles opposite to equal sides ...(1) are equal)$

Also, AC = BC

 $\Rightarrow \angle B = \angle A \qquad (Angles opposite to equal sides ...(2)$ are equal)

ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

AB = AC

$\Rightarrow \angle C = \angle B$	(Angles opposite to equal sides	(1
	are equal)	

In ∆ABC,

 $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property of triangles)

 \Rightarrow 90° + \angle B + \angle C = 180°

 \Rightarrow 90° + \angle B + \angle B = 180°

(From (1))

(Given that $\angle A = 90^\circ$)

 $\Rightarrow 2 \angle B = 90^{\circ}$

 $\Rightarrow \angle B = 45^{\circ}$

 $\therefore \angle B = \angle C = 45^{\circ}$

HOMEWORK ASSIGNMENT

Exercise 7.2 Question number 5,6,7,8.

AHA

In the given figure, $\triangle ABD$ and ABCD are isosceles triangles on the same base BD. Prove that $\angle ABC = \angle ADC$.

THANKING YOU ODM EDUCATIONAL GROUP

