

PERIOD 5

MATHEMATICS

CHAPTER NUMBER:~7

CHAPTER NAME:~ TRIANGLES

CHANGING YOUR TOMORROW

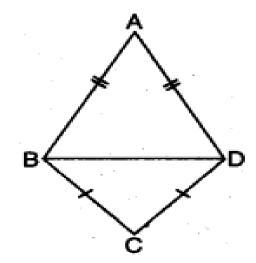
Website: www.odmegroup.org Email: info@odmps.org

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

Toll Free: 1800 120 2316

PREVIOUS KNOWLEDGE TEST

In the given figure, \triangle ABD and ABCD are isosceles triangles on the same base BD. Prove that \angle ABC = \angle ADC.



LEARNING OUTCOME:~

- 1. Students will be able to learn more properties of triangle.
- 2. Students will be able to learn some properties of isosceles triangle.

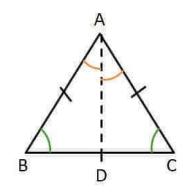
THEOREM 7.2~

Angles opposite to equal sides of an isosceles triangles are equal.

<u>Given</u>:- Isosceles triangle ABC

i.e. AB = AC

To Prove :- $\angle B = \angle C$



Construction: Draw a bisector of ∠A intersecting BC at D.

Proof:-

In △BAD and △CAD

AB = AC (Given)

∠BAD = ∠CAD (By Construction)

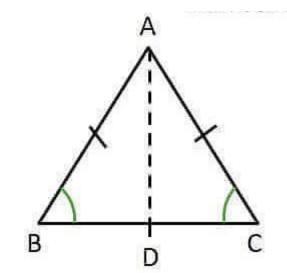
AD = AD (Common)

 $\triangle BAD \cong \triangle CAD$ (By SAS congruence rule)

Thus,

$$\angle ABD = \angle ACD$$
 (By CPCT)

$$\Rightarrow \angle B = \angle C$$



Hence, angles opposite to equal sides are equal.

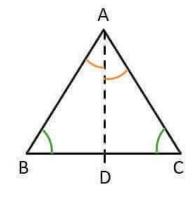
Hence proved

THEOREM 7.3~

The sides opposite to equal angles of a triangle are equal.

Given :- A triangle ABC where $\angle B = \angle C$

To Prove :- AB = AC



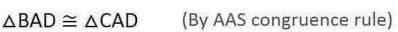
Construction:- Draw a bisector of ∠A intersecting BC at D.

Proof:-

AD = AD

In △BAD and △CAD

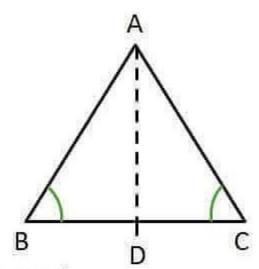
$$\angle B = \angle C$$
 (Given)



Thus,

$$AB = AC$$

(By CPCT)



Hence, sides opposite to equal angles are equal.

Hence proved

 Δ ABC and Δ DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to interest BC at P, show that

(i)
$$\triangle$$
 ABD \cong \triangle ACD

Given:

ΔABC is isosceles,

$$AB = AC \qquad ...(1)$$

Also, ΔDBC is isosceles,

$$DB = DC \qquad ...(2)$$

B

<u>To prove</u>: \triangle ABD \cong \triangle ACD

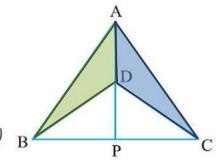
In \triangle ABD and \triangle DBC, we have

AB = AC (From (1))

BD = DC (From (2))

AD = AD (Common)

 Δ ABD \cong Δ ACD (SSS congruence rule)

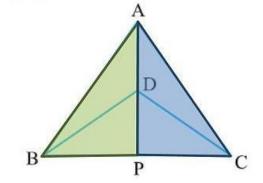


(ii)
$$\triangle$$
 ABP \cong \triangle ACP

From part (i),

$$\triangle$$
 ABD \cong \triangle ACD

So,
$$\angle BAP = \angle PAC$$
 (CPCT) ...(1)



In \triangle ABP and \triangle ACP,

$$AB = AC$$
 (Given)

$$\angle BAP = \angle PAC$$
 (From (1))

$$AP = AP$$
 (Common)

$$\triangle$$
 ABP \cong \triangle ACP. (SAS congruence rule)

(iii)AP bisects
$$\angle A$$
 as well as $\angle D$.

To prove:
$$\angle BAD = \angle CAD \& \angle BDP = \angle CDP$$

Proof:

From part (i) , \triangle ABD \cong \triangle ACD

So,
$$\angle BAD = \angle CAD$$
. (CPCT)

Hence AP bisects ∠ A

For
$$\angle BDP = \angle CDP$$
,
we will first prove \triangle BDP \cong \triangle CDP

From part(ii) ,
$$\triangle$$
 ABP \cong \triangle ACP BP = CP ...(1)

In Δ BDP and CDP, we have

BD = CD (Given)

BP = CP (From (1))

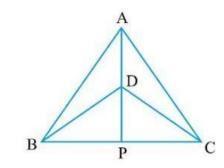
DP = DP (Common)

So,
$$\triangle$$
 BDP \cong \triangle CDP (SSS congruence rule)

 $\Rightarrow \angle BDP = \angle PDC$ (CPCT)

Thus, AP bisects ∠ D

To prove: BP = CP &
$$\angle APB = \angle APC = 90^{\circ}$$



Proof

From part(ii),
$$\Delta ABP \cong \Delta ACP$$

$$BP = CP$$
 (CPCT)

$$\angle APB = \angle APC$$
 (CPCT)

Since BC is a line,

$$\therefore \angle APB + \angle APC = 180^{\circ} \qquad (Linear Pair)$$

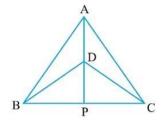
$$\angle APB + \angle APB = 180^{\circ}$$

 $2\angle APB = 180^{\circ}$

$$\angle APB = \frac{180^{\circ}}{2}$$

$$\angle APB = 90^{\circ}$$

So,
$$\angle APB = \angle APC = 90^{\circ}$$

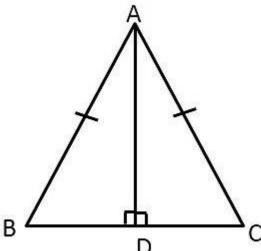


$$\& \angle APB = \angle APC = 90^{\circ}$$

$$\Rightarrow$$
 AP is perpendicular bisector of BC.

AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC, (ii) AD bisects $\angle A$.



AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC , (ii) AD bisects $\angle A$.

Given:

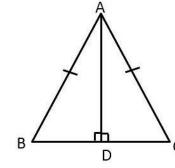
Δ ABC is an isosceles triangle,

Also, AD is the altitude

So,
$$\angle ADC = \angle ADB = 90^{\circ}$$
 ...(2)

<u>To prove</u>: (i) BD = CD & (ii) $\angle BAD = \angle CAD$

Proof



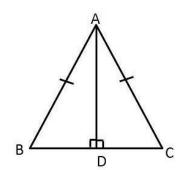
In ΔADB and ΔADC

$$\angle ADC = \angle ADB = 90^{\circ}$$
 (Both 90°)

$$AB = AC$$
 (From (1))

$$AD = AD$$
 (Common)

∴
$$\triangle$$
 ADB \cong \triangle ADC (R.H.S Congruency)



Hence, by CPCT

$$\Rightarrow$$
 BD = DC

and
$$\angle BAC = \angle DAC$$

Hence proved

HOMEWORK ASSIGNMENT

Exercise 7.3 Question number 1,2

AHA

- If Δ PQR ≅ Δ EDF, then is it true to say that PR = EF? Give reason for your answer.
- 2. In \triangle PQR, \angle P = 70° and \angle R = 30°. Which side of this triangle is the longest? Give reason for your answer.

THANKING YOU ODM EDUCATIONAL GROUP

