

PERIOD 7

MATHEMATICS

CHAPTER NUMBER:~7

CHAPTER NAME:~ TRIANGLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

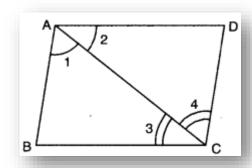
Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

In the given figure, if $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$, then prove that BC = CD. Solution:



LEARNING OUTCOME:~

1. Students will be able to learn SSS and RHS congruence rule.

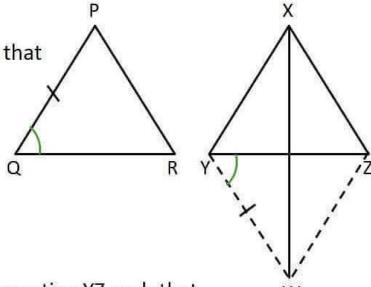
SSS CONGRUENCE RULE :~

If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.

 $\underline{\text{Given}} := \Delta \ PQR \ \& \ \Delta \ XYZ \ such \ that$

$$PQ = XY$$
, $QR = YZ$, $PR = XZ$

To Prove :- $\Delta PQR \cong \Delta XYZ$



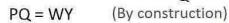
Construction: - Draw XW intersecting YZ such that

$$\angle$$
WYZ = \angle PQR and WY = PQ.

Also, Join WZ

Proof:-

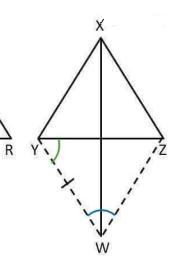
In Δ PQR and Δ WYZ



$$\angle PQR = \angle WYZ$$
 (By construction)

$$\Delta PQR \cong \Delta WYZ$$
 (SAS Congruency)

Thus,
$$\angle W = \angle P$$
 (CPCT) ...(1)

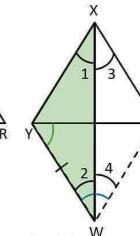


Since PQ = WY (By construction)

In
$$\triangle$$
 XYW

Since PQ = WY (By construction and PQ = XY (Given)

 \therefore WY = XY



$$\Rightarrow$$
 $\angle 1 = \angle 2$ (Angles opposite to equal sides are equal) ...(2)

Similarly, we can prove

Adding (2) and (3) we get

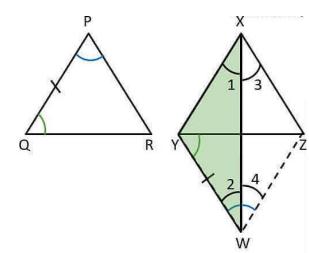
$$\angle 1 + \angle 3 = \angle 2 + \angle 4$$

$$\Rightarrow \angle X = \angle W$$

$$\Rightarrow \angle X = \angle W$$

From (1),
$$\angle W = \angle P$$

$$\therefore \angle P = \angle X$$
 ...(4)



Now in $\triangle PQR$ and $\triangle XYZ$

$$\angle P = \angle X$$
 (From (4))

$$\Rightarrow \Delta PQR \cong \Delta XYZ$$
 (SAS congruency)

Hence Proved.

RHS CONGRUENCE RULE :~

If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangle are congruent.

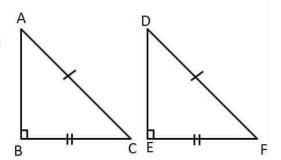
Given :- Two right triangles \triangle ABC and \triangle DEF where

$$\angle B = 90^{\circ} \& \angle E = 90^{\circ}$$
,

hypotenuse is equal i.e. AC = DF

& one side is equal i.e. BC = EF

To Prove :- $\triangle ABC \cong \triangle DEF$



Proof:-

In right ∆ABC

By Pythagoras theorem

$$AC^2 = AB^2 + BC^2$$

$$AB^2 = AC^2 - BC^2$$
 ...(1

In right ∆DEF

By Pythagoras theorem,

$$DF^2 = DE^2 + EF^2$$

$$DE^2 = DF^2 - EF^2$$

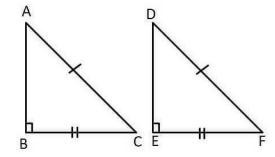
From (1)

$$AB^2 = AC^2 - BC^2$$

$$AB^2 = DF^2 - EF^2$$
 (: $AC = DF$
& $BC = EF$ (given))

$$AB^2 = DE^2$$
 (From (2))

$$AB = DE$$
 ...(3)



.: In ΔABC and ΔDEF

$$AB = DE$$
 (From 3)

$$AC = DF$$
 (Given)

$$\Rightarrow \Delta ABC \cong \Delta DEF$$
 (By SSS congruence rule)

 Δ ABC and Δ DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to interest BC at P, show that

(i)
$$\triangle$$
 ABD \cong \triangle ACD

Given:

ΔABC is isosceles,

$$AB = AC \qquad ...(1)$$

Also, ΔDBC is isosceles,

$$DB = DC \qquad ...(2)$$

B

<u>To prove</u>: \triangle ABD \cong \triangle ACD

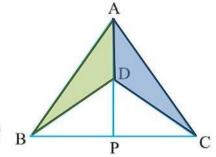
In \triangle ABD and \triangle DBC, we have

AB = AC (From (1))

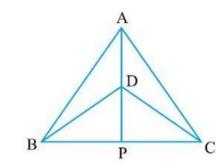
BD = DC (From (2))

AD = AD (Common)

 Δ ABD \cong Δ ACD (SSS congruence rule)



To prove: BP = CP &
$$\angle APB = \angle APC = 90^{\circ}$$



Proof

From part(ii),
$$\Delta ABP \cong \Delta ACP$$

$$BP = CP$$
 (CPCT)

$$\angle APB = \angle APC$$
 (CPCT)

Since BC is a line,

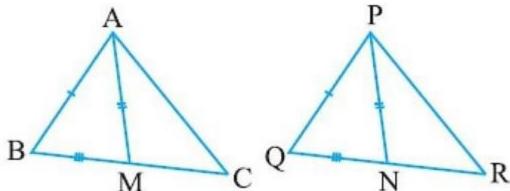
$$\therefore \angle APB + \angle APC = 180^{\circ} \qquad (Linear Pair)$$

$$\angle APB + \angle APB = 180^{\circ}$$

 $2\angle APB = 180^{\circ}$

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see figure). Show that :

(i) \triangle ABM \cong \triangle PQN



Given:
$$AB = PQ$$

$$...(1)$$

$$B$$

$$M$$

$$C$$

$$N$$

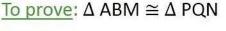
$$BC = QR \qquad ...(2)$$

Also, AM is the median of
$$\Delta$$
 ABC

So, BM = CM =
$$\frac{1}{2}$$
 BC

Also, PN is the median of
$$\Delta$$
 PQR

So, QN = RN =
$$\frac{1}{2}$$
 QR

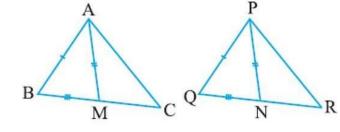


Since

$$BC = QR$$

$$\frac{1}{2}BC = \frac{1}{2}QR$$

BM = QN



...(4)

In Δ ABM & Δ PQN

$$AB = PQ$$
 (From (1))

$$AM = PN$$
 (From (3))

$$BM = QN$$
 (From (6))

So, \triangle ABM \cong \triangle PQN (SSS congruence rule)

HOMEWORK ASSIGNMENT

Exercise 7.3 Practice question number 1,2,3

AHA

1. IF P IS A POINT EQUIDISTANT FROM TWO LINES L AND M INTERSECTING AT A POINT A .SHOW THAT THE LINE BISECTS THE ANGLE BETWEEN THEM.

THANKING YOU ODM EDUCATIONAL GROUP

