

PERIOD 10

MATHEMATICS

CHAPTER NUMBER:~7

CHAPTER NAME:~ TRIANGLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

. ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.

LEARNING OUTCOME:~

1. Students will be able to learn Theorems 7.7 and 7.8.

2. Students will be able to solve applications based on Theorems 7.7 and 7.8.

Theorem 7.7:-

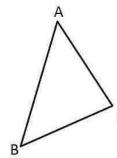
In any triangle, the side opposite to the larger (greater) angle is longer.

Theorem 7.7:

In any triangle, the side opposite to the larger (greater) angle is longer.

Given :- $\triangle ABC$ such that $\angle C > \angle B$.

To Prove :- AB > AC .



Proof:-

Let us assume AC > AB,

then $\angle B > \angle C$

By **Theorem 7.6**: If two sides of a triangle are unequal, the angle opposite to longer side is larger

Which contradicts our assumptions

Hence AB > AC

Hence Proved.

Theorem 7.8:-

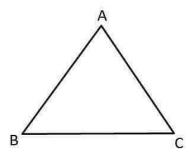
The sum of any two sides of a triangle is greater than the third side.

Theorem 7.8:-

The sum of any two sides of a triangle is greater than the third side.

Given :- A triangle ABC

To Prove :- AB + AC > BC .

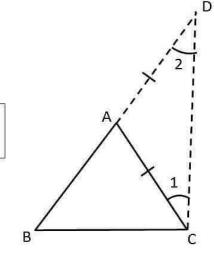


Construction: - Extend AB to D such that AD = AC

Proof:- In Δ ACD

$$AD = AC$$
 (By construction)

By **Theorem 7.2**: In triangle, angles opposite to equal sides are equal



Now, $\angle BCD = \angle BCA + \angle 1$ $(:: \angle 1 = \angle 2)$ = ∠BCA + ∠2 > \(\(\) \(\) Now, in ABCD $\angle BCD > \angle 2$ By Theorem 7.7: Side opposite to the larger \Rightarrow BD > BC (greater) angle is longer. \Rightarrow AB + AD > BC (:BD = AB + AD)(∵ AD = AC By construction)

Similarly we can prove

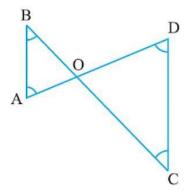
 \Rightarrow AB + AC > BC

$$AB + BC > AC$$

$$\&$$
 AC + BC > AB

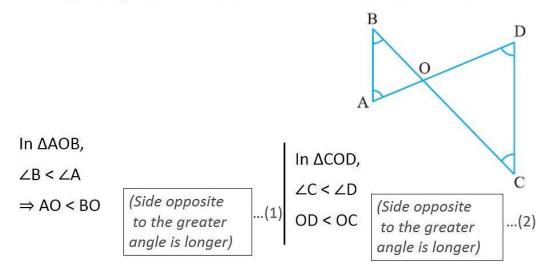
Ex7.4, 3

In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.



Ex7.4, 3

In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.



Adding equations (1) and (2),

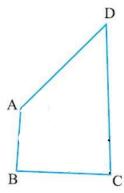
$$AO + OD < BO + OC$$

AD < BC

Hence proved

Ex7.4, 4

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the given figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.



Ex7.4, 4

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the given figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

Given:

AB is the smallest side ...(1)

CD is the longest side ...(2)

To prove: $\angle A > \angle C \& \angle B > \angle D$

Proof:

Join A & C, and mark the angles

In $\triangle ABC$,

BC > AB (From (1)) $\therefore \angle 1 > \angle 2$ (Angle opposite to the longer side is greater)

In ΔADC,

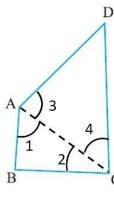
CD > AD (From (2))

 \therefore $\angle 3 > \angle 4$ (Angle opposite to the longer side is greater)

Adding equations

$$\angle 1 + \angle 3 > \angle 2 + \angle 4$$

Now, solving for \angle B > \angle D



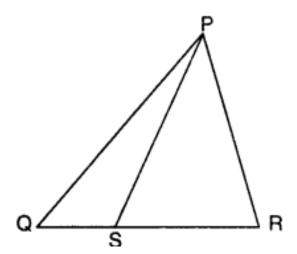
HOMEWORK ASSIGNMENT

Exercise 7.4

Question number 3,4

AHA

In figure, 'S' is any point on the side QR of APQR. Prove that PQ + QR + RP > 2PS.



THANKING YOU ODM EDUCATIONAL GROUP

