CHAPTER-6

SETS

QUESTION BANK

AVERAGE LEVEL

- 1. Write the following sets in roster (Tabular) form:
 - (i) $A_1 = \{x : 2x + 3 = 11\}$
 - (ii) $A_2 = \{x : x^2 4x 5 = 0\}$
 - (iii) $A_3 = \{x : x \in \mathbb{Z}, -3 \le x < 4\}$
 - (iv) $A_4 = \{x : x \text{ is a two digit number and sum of digits of } x \text{ is } 7\}$
 - (v) $A_5 = \{x : x = 4n, n \in W \text{ and } n < 4\}$
 - (vi) $A_6 = \{x : x = n/n+2; n \in \mathbb{N} \text{ and } n > 5\}$
- 2. (i) Is $\{1, 2, 4, 16, 64\} = \{x: x \text{ is a factor of } 32\}$? Give reason.
 - (ii) Is $\{x: x \text{ is a factor of } 27\} \neq \{3, 9, 27, 54\}$? Give reason.
 - (iii) Write the set of even factors of 124.
 - (iv) Write the set of odd factors of 72.
 - (v) Write the set of prime factors of 3234.
 - (vi) Is $\{x: x^2 7x + 12 = 0\} = \{3, 4\}$?
 - (vii) Is $\{x : x^2 5x 6 = 0\} = \{2, 3\}$
- 3. List the elements of the following sets:
 - (i) $\{x : x^2 2x 3 = 0\}$
 - (ii) $\{x : x = 2y + 5; y \in \mathbb{N} \text{ and } 2 \le y < 6\}$
 - (iii) {x : x is a factor of 24}
 - (iv) $\{x : x \in Z \text{ and } x^2 \le 4\}$
 - (v) $\{x : 3x 2 \le 10, x \in \mathbb{N}\}$
 - (vi) $\{x : 4 2x > -6, x \in Z\}$
- Find the cardinal number of the following sets:
- (i) $A_1 = \{-2, -1, 1, 3, 5\}$
- (ii) $A_2 = \{x : x \in \mathbb{N} \text{ and } 3 \le x < 7\}$
- (iii) $A_3 = \{p : p \in W \text{ and } 2p 3 < 8\}$
- (iv) $A_4 = \{b : b \in Z \text{ and } -7 < 3b 1 \le 2\}$
- 5. State, which of the following sets are finite and which are infinite:

- (i) $A = \{x : x \in Z \text{ and } x < 10\}$
- (ii) $B = \{x : x \in W \text{ and } 5x-3 \le 20\}$
- (iii) $P = \{y : y = 3x-2, x \in \mathbb{N} \& x > 5\}$

(iv)
$$M = \{r : r = \frac{3}{n}; n \in W \text{ and } 6 < n \le 15\}$$

Note: (i) A set with finite (limited) number of elements in it, is called a finite set, (ii) A set which is not finite is called an infinite set.

- 6. Find, which of the following sets are singleton sets:
 - (i) The set of points of intersection of two non-parallel st. lines in the same plane
 - (ii) $A = \{x : 7x 3 = 11\}$
 - (iii) $B = \{y : 2y + 1 < 3 \text{ and } y \in W\}$

Note: A set, which has only one element in it, is called a SINGLETON or unit set.

- 7. Find, which of the following sets are empty:
 - (i) The set of points of intersection of two parallel lines.
 - (ii) $A = \{x: x \in \mathbb{N} \text{ and } 5 < x < 6\}$
 - (iii) B = $\{x : x^2 + 4 = 0, x \in \mathbb{N}\}$
 - (iv) C = {even numbers between 6 & 10}
 - (v) D = {prime numbers between 7 & 11}

Note: The set, which has no element in it, is called the empty or null set.

- 8. (i) Are the sets A = $\{4, 5, 6\}$ and B = $\{x: x^2 5x 6 = 0\}$ disjoint?
 - (ii) Are the sets $A = \{b, c, d, e\}$ and $B = \{x: x \text{ is a letter in the word 'MASTER'}\}$ joint? Note:
 - (i) Two sets are said to be joint sets, if they have at least one element in common.
 - (ii) Two sets are said to be disjoint, if they have no element in common.
- 9. State, whether the following pairs of sets are equivalent or not:
 - (i) $A = \{x : x \in N \text{ and } 11 \ge 2x 1\} \text{ and } B = \{y : y \in W \text{ and } 3 \le y \le 9\}$
 - (ii) Set of integers and set of natural numbers.
 - (iii) Set of whole numbers and set of multiples of 3.
 - (iv) $P = \{5, 6, 7, 8\}$ and $M = \{x : x \in W \text{ and } x < 4\}$

Note: Two sets are said to be equivalent, if they contain the same number of elements

- 10. State, whether the following pairs of sets are equal or not:
 - (i) $A = \{2, 4, 6, 8\}$ and
 - $B = \{2n : n \in \mathbb{N} \text{ and } n < 5\}$
 - (ii) $M = \{x : x \in W \text{ and } x + 3 < 8\} \text{ and }$
 - $N = \{y : y = 2n 1, n \in N \text{ and } n < 5\}$
 - (iii) $E \{x : x^2 + 8x 9 = 0\}$ and
 - $F = \{1, -9\}$
 - (iv) $A = \{x : x \in n, x < 3\}$ and

$$B = \{y : y^2 - 3y + 2 = 0\}$$

Note: Two sets are equal, if both the sets have same (identical) elements.

- 11. State whether each of the following sets is a finite set or an infinite set:
 - (i) The set of multiples of 8.
 - (ii) The set of integers less than 10.
 - (iii) The set of whole numbers less than 12.
 - (iv) $\{x : x = 3n 2, n \in W, n \le 8\}$
 - (v) $\{x : x = 3n 2, n \in \mathbb{Z}, n \le 8\}$
 - (vi) $\{x : x = n-2/n+1, n \in w\}$
- 12. Answer, whether the following statements are true or false. Give reasons.
 - (i) The set of even natural numbers less than 21 and the set of odd natural numbers less than 21 are equivalent sets.
 - (ii) If $E = \{factors of 16\}$ and $F = \{factors of 20\}$, then E = F.
 - (iii) The set A = {integers less than 20} is a finite set.
 - (iv) If $A = \{x: x \text{ is an even prime number}\}$, then set A is empty.
 - (v) The set of odd prime numbers is the empty set.
 - (vi) The set of squares of integers and the set of whole numbers are equal sets.
 - (vii) In n (P) = n (M), then $P \rightarrow M$.
 - (viii) If set P = set M, then n(P) = n(M).
 - (ix) $n(A) = n(B) \Rightarrow A = B$.
- 13. Find all the subsets of each of the following sets:
 - (i) $A = \{5, 7\}$
 - (ii) $B = \{a, b, c\}$
 - (iii) $C = \{x : x \in W, x \le 2\}$
 - (iv) {p : p is a letter in the word 'poor'}
- 14. If C is the set of letters in the word "cooler", find:
 - (i) Set C
 - (ii) n(C)
 - (iii) Number of its subsets
 - (iv) Number of its proper subsets.

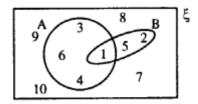
Note: (i) If a set has n elements, the number of its subsets = 2^n

- (ii) If a set has n elements, the number of its proper subsets = $2^n 1$
- 15. If $T = \{x: x \text{ is a letter in the word 'TEETH'}\}$, find all its subsets.
- 16. Given the universal set = $\{-7, -3, -1, 0, 5, 6, 8, 9\}$, find :
 - (i) $A = \{x : x < 2\}$
 - (ii) $B = \{x : -4 < x < 6\}$
- 17. Given the universal set = $\{x : x \in \mathbb{N} \text{ and } x < 20\}$, find :
 - (i) $A = \{x : x = 3p ; p \in N\}$
 - (ii) $B = \{y : y 2n + 3, n \in N\}$

- (iii) $C = \{x : x \text{ is divisible by 4}\}$
- 18. Find the proper subsets of $\{x : x^2 9x 10 = 0\}$
- 19. Given, A = {Triangles}, B = {Isosceles triangles}, C = {Equilateral triangles}. State whether the following are true or false. Give reasons.
 - (i) $A \subseteq B$
 - (ii) $B \subseteq A$
 - (iii) C⊆ B
 - (iv) $B \subset A$
 - (v) $C \subset A$
 - (vi) $C \subseteq B \subseteq A$
- 20. Given, A = {Quadrilaterals}, B = {Rectangles}, C = {Squares}, D= {Rhombuses}.
 - State, giving reasons, whether the following are true or false.
 - (i) $B \subset C$
 - (ii) $D \subset B$
 - (iii) $C \subseteq B \subseteq A$
 - (iv) $D \subset A$
 - (v) $B \supseteq C$
 - (vi) $A \supseteq B \supseteq D$
- 21. Write the solution set of the equation $x^2 4=0$ in roster form.
- 22.

If
$$A = \{1,2,3,4,5\}$$

$$B = \{2,4,6,8\}$$


and
$$C = \{3,4,5,6\}$$

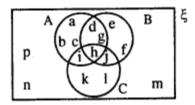
Verify:

(i)
$$A - (B \cup C) = (A-B) \cap (A-C)$$

(ii)
$$A - (B \cap C) = (A-B) \cup (A-C)$$

- 23. From the given diagram, find:
- (i) A'
- (ii) B'
- (iii) $A' \cup B'$
- (iv) $(A \cap B)'$

Is
$$A' \cup B' = (A \cap B)'$$
?


Also, verify if
$$A' \cap B' = (A \cup B)'$$
.

24

Use the given diagram to find:

(i)
$$A \cup (B \cap C)$$

Is
$$A \cap B' = A - B$$
?

25. If
$$n(A - B) = 12$$
, $n(B - A) = 16$ and $n(A \cap B) = 5$, find:

- (i) n(A)
- (ii) n(B)
- (iii) $n(A \cup B)$

26. If
$$n(\xi) = 40$$
, $n(A') = 15$, $n(B) = 12$ and $n((A \cap B)') = 32$, find :

- (i) n(A)
- (ii) n(B')
- (iii) $n(A \cap B)$
- (iv) $n(A \cup B)$
- (v) n(A B)
- (vi) n(B A)

27. If n (
$$\xi$$
) = 32, n(A) = 20, n(B) = 16 and n((A \cup B)') = 4, find :

- (i) $n(A \cup B)$
- (ii) $n(A \cap B)$
- (iii) n(A B)

28. If
$$n(\xi) = 40$$
, $n(A) = 20$, $n(B') = 16$ and $n(A \cup B) = 32$, then find $n(B)$ and $n(A \cap B)$.

29. If n ξ = 20 and n(A') = 7, then find n(A).

30. If n (A) = 20, n (B) = 16 and n(A
$$\cup$$
 B) = 30, find n(A \cap B)

31. If
$$4 = \{x : x \in W, x \le 10\}$$
, A. $= \{x : x \ge 5\}$ and $B = \{x : 3 \le x < 8\}$, then verify that:

- (i) $(A \cup B)' = A' \cap B'$
- (ii) $(A \cap B)' = A' \cup B'$
- (iii) $A B = A \cap B'$
- (iv) $B A = B \cap A'$

32. If
$$\xi = \{1, 2, 3, \dots, 9\}$$
, A = $\{1, 2, 3, 4, 6, 7, 8\}$ and B = $\{4, 6, 8\}$, then find.

- (i) A'
- (ii) B'
- (iii) A∪B

```
(iv) A \cap B
```

$$(v) A - B$$

(vi)
$$B - A$$

33. If ξ = {natural numbers between 10 and 40}

(i) find
$$A \cup B$$
 and $A \cap B$

$$n(A \cup B) = B(A) + n(B) - n(A \cap B)$$

34. If A = (letters of word INTEGRITY) and B = (letters of word RECKONING), find

(iv)
$$B - A$$

Also verify that:

(a)
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

(b)
$$n(A - B) = n(A \cup B) - n(B)$$

$$= n(A) - n(A \cup B)$$

(c)
$$n(B - A) = n(A \cup B) - n(A)$$

$$= n(B) - n(A \cap B)$$

(d)
$$n(A \cup B) = n(A - B) + n(B - A) + n(A \cap B)$$
.

35. If A
$$\{x : x \in \mathbb{N} \text{ and } 3 < x < 1\}$$
 and B = $\{x : x \in \mathbb{W} \text{ and } x \le 4\}$, find

- (i) A U B
- (ii) A ∩ B
- (iii) A B
- (iv) B A

