CHAPTER 5

EXPONENTS

We can write large numbers in a short form using exponents. For example: $10,000 = 10 \times 10 \times 10 \times 10 = 10^4$ Here, '10' is called the base and '4' the exponent. The number 10^4 is read as 10 raised to the power of 4 or simply as the fourth power of 10. 10^4 is called the exponential form of 10,000.

 $(1)^{any natural number} = 1$

(-1)^{an odd natural number} = -1

 $(-1)^{\text{an even natural number}} = +1$

 $a^m \times a^n = a^{m+n}$, where m and n are whole numbers and a ($\neq 0$) is an integer. This formula can be used to write answers to above questions.

For any non-zero integer a, $a^m \div a^n = a^{m \cdot n}$ where m and n are whole numbers and m > n.

For any non-zero integer a, $(a^m)^n = a^{mn}$ (where m and n are whole numbers)

For any non-zero integer a $a^m \times b^m = (ab)^m$ (where m is any whole number)

$$a^m \div b^m = \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$$

(where m is a whole number; a and b are any non-zero integers)
a⁰ = 1 (for any non-zero integer a)
Any number (except 0) raised to the power (or exponent) 0 is 1.
Decimal Number System

 $10,000 = 10^4$ $1000 = 10^3$ $100 = 10^2$ $10 = 10^1$

ODM Educational Group

$1 = 10^{0}$

We can write the expansion of a number using powers of 10 in the exponent form.

Expressing Large Numbers in the Standard Form

Large numbers can be expressed conveniently using exponents. Such a number is said to be in standard form if it can be expressed as $k \times 10^m$, where $1 \le k < 10$ and m is a natural number.

Note that, one less than the digit count (number of digits) to the left of the decimal point in a given number, is the exponent of 10 in the standard form.

For any rational number a and positive integer n, we define a^n as $a \times a \times a \times \times a$ (n times). a^n is known as the nth power of a and is read as 'a raised to the power n'. The rational a is called the base and n is called the exponent or power.

e.g. $10,000 = 10 \times 10 \times 10 \times 10 = 10^4$.

10 is the base and 4 is the exponent.

Reciprocal of
$$\left(\frac{a}{b}\right)^m = \frac{b^m}{a^m} = \left(\frac{b}{a}\right)^m$$
, so the reciprocal of $\left(\frac{a}{b}\right)^m \operatorname{is}\left(\frac{b}{a}\right)^m$.

Multiplying Powers with the Same Base: If a is any non-zero integer and whole numbers are m and n, then $a^m \times a^n = a^{m+n}$

e.g. $2^4 \times 2^2$ a = 2, m = 4, n = 2 $2^4 \times 2^2 = 2^{4+2} = 2^6$

Dividing Powers with the Same Base: If a is any non-zero integer and m, n are the whole number, then $a^m \div a^n = a^{m-n}$ e.g. $2^4 \div 2^2$ a = 2, m = 4, n = 2 $2^4 \div 2^2 = 2^{4-2} = 2^2$

Taking Power of a Power: If a is any non-zero integer and m, n are whole numbers, $(a^m)^n = a^{mn}$ e.g. $(6^2)^4$ a = 6, m = 2, n = 4 $(6^2)^4 = (6)^{2\times4} = 6^8$.

Multiplying Powers with the Same Exponents: If a, b are two non-zero integers and m is any whole number, then $a^m \times b^n = (a \times b)^m$ e.g. $2^3 \times 3^3$

ODM Educational Group

[EXPONENTS] | MATHS | STUDY NOTES

a = 2, b = 3, m = 3 $2^3 \times 3^3 = (2 \times 3)^3 = 6^3$.

Dividing Powers with the Same Exponents: If a, b are two non-zero integers and m is a whole number, then

$$a^{m} \div b^{m} = \frac{a^{m}}{b^{m}} = \left(\frac{a}{b}\right)^{m}$$

e.g. $2^{3} \div 3^{3}$
 $a = 2, b = 3, m = 3$
 $2^{3} \div 3^{3} = \frac{2^{3}}{3^{3}} = \left(\frac{2}{3}\right)^{3}$

Numbers with Exponent Zero: If a be any non-zero integer, then, $a^0 = 1$

e.g.
$$\frac{2^5}{2^5} = 2^{5-5} = 2^0 = 1$$

Numbers with Negative Exponent: If a is any non-zero integer, then $a^{-1} = 1a$ e.g. $2^{-5} = 125$

