### CHAPTER 2

### **RATIONAL NUMBERS**

### **QUESTION BANK**

# AVERAGE LEVEL

### **Question 1:**

A rational number is defined as a number that can be expressed in the form p/q, where p and q are integers and

| (a) q = 0 | (b) q = 1 |  |
|-----------|-----------|--|
| (c) q ≠ 1 | (d) q ≠ 0 |  |

### **Question 2:**

Which of the following rational numbers is positive?



### **Question 3:**

Which of the following rational numbers is negative?

| (a) $-\left(\frac{-3}{7}\right)$ | (b) $\frac{-5}{-8}$ |
|----------------------------------|---------------------|
| (c) $\frac{9}{8}$                | (d) $\frac{3}{-7}$  |

### **Question 4:**

In the standard form of a rational number, the common factor of numerator and denominator is always

(a) 0 (b) 1 c) -2 (d) 2

# **Question 5:**

Which of the following rational numbers is equal to its reciprocal? (a) 1 (b) 2 c) 1/2 (d)0

### **Question 6:**

The reciprocal of 1/2 is (a) 3 (b) 2 c) -1 (d)0

 $(d) = \frac{-4}{-5}$ 

# Question 7:

The standard form of  $\frac{-48}{60}$  is (a)  $\frac{48}{60}$  (b)  $\frac{-60}{48}$  (c)  $\frac{-4}{5}$ 

# **Question 8:**

Which of the following is equivalent to 4/5 ?

| $(a) = \frac{5}{2}$ | (b) 16              |
|---------------------|---------------------|
| 4                   | 25                  |
| (16)                | (d) $\frac{15}{15}$ |
| (C) 20              | 25                  |

# **Question 9:**

| How many rational number | s are there between two ratior | nal numbers? |
|--------------------------|--------------------------------|--------------|
| (a) 1                    | (b) 0                          |              |
| (c) unlimited            | (d) 100                        |              |

### **Question 10:**

| In the standard form of a rational numb | per, the denominator is always a |
|-----------------------------------------|----------------------------------|
| (a) 0                                   | (b) negative integer             |
| (c) positive integer                    | (d) 1                            |

# **Question 11:**

To reduce a rational number to its standard form, we divide its numerator and denominator by their (a) LCM (b) HCF

| (c) product | (d) | multiple |
|-------------|-----|----------|
|-------------|-----|----------|

# Question 12:

| Which is great     | er number in the fo | ollowing?         |       |
|--------------------|---------------------|-------------------|-------|
| (a) $-\frac{1}{2}$ | (b) 0               | (c) $\frac{1}{2}$ | (d)-2 |

### **Fill in the Blanks**

In questions 13 to 46, fill in the blanks to make the statements true.

### Question 13:

 $\frac{-3}{8}$  is a \_\_\_\_\_ rational number .

### **Question 14:**

 $\frac{4}{7}$  is a \_\_\_\_\_rational number.

# **Question 15:**

The standard form of  $\frac{-8}{36}$  is .

### **Question 16:**

The standard form of  $\frac{18}{-24}$  is

### **Question 17:**

On a number line,  $\frac{-1}{2}$  is to the \_\_\_\_\_ of Zero(0).

### **Question 18:**

On a number line,  $\frac{3}{4}$  is to the \_\_\_\_\_ of Zero(0).

# Question 19:

 $\frac{-1}{2}$  is \_\_\_\_\_ than  $\frac{1}{5}$ .

# $\frac{\text{Question 20:}}{\frac{-3}{5}}$ is \_\_\_\_\_ than 0.

Question 21:  $\frac{-16}{24}$  and  $\frac{20}{-16}$  represent\_\_\_\_\_ rational numbers.

Question 22:  $\frac{-27}{45}$  and  $\frac{-3}{5}$  represent\_\_\_\_\_ rational numbers.

Question 23: Additive inverse of  $\frac{2}{3}$  is \_\_\_\_\_.

Question 24:  $\frac{-3}{5} + \frac{2}{5} =$ \_\_\_\_\_.

Question 25:  $\frac{-5}{6} + \frac{-1}{6} =$  \_\_\_\_\_.

 $\frac{\text{Question 26:}}{\frac{3}{4} \times \left(\frac{-2}{3}\right)} = \_$ 

 $\frac{\text{Question 27:}}{\frac{-5}{3} \times \left(\frac{-3}{5}\right)} = \underline{\qquad}$ 

Question 28: Given,  $\frac{-6}{7} = \overline{42}$ 

Question 29:  $\frac{1}{2} = \frac{6}{2}$ 

Question 30:  $\frac{-2}{9} - \frac{7}{9} =$ 

### MODERATE LEVEL

In questions 31 to 35, fill in the boxes with the correct symbol '<','<' or '='.

Question 31:  $\frac{7}{-8}$ 

Question 32:  $\frac{3}{7} \square \frac{-5}{6}$ 

Question 33:  $\frac{5}{6}$ 

Question 34:  $\frac{-9}{7} < \frac{4}{-7}$ 

Question 35: $\frac{8}{8} \square \frac{2}{2}$ Question 36:The reciprocal of \_\_\_\_\_ does not exist.

Question 37: The reciprocal of 1 is\_\_\_\_\_

 $\frac{\text{Question 38:}}{\frac{-3}{7} \div \left(\frac{-7}{3}\right)} =$ 

Question 39:  $0 \div \left(\frac{-5}{6}\right)_{=}$ 

 $\frac{\text{Question 40:}}{0 \times \left(\frac{-5}{6}\right)} = \underline{}$ 

Question 41: \_\_\_\_\_x  $\left(\frac{-2}{5}\right)_{=1}$ 

Question 42: The standard form of rational number – 1 is\_\_\_\_\_.

### **Question 43:**

If m is a common divisor of a and b, then  $\frac{a}{b} = \frac{a+m}{-}$ 

### **Question 44:**

If p and q are positive integers, then  $\frac{p}{q}$  is a \_\_\_\_\_ rational number and  $\frac{p}{-q}$  is a \_\_\_\_\_ rational number.

### **Question 45:**

Two rational numbers are said to be equivalent or equal, if they have the same\_\_\_\_\_form.

### **Question 46:**

If p/q is a rational number, then q cannot be\_\_\_\_\_

# True/False

In questions 47 to 65, state whether the following statements are True or False.

### **Question 47:**

Every natural number is a rational number, but every rational number need not be a natural

number.

### **Question 48:**

Zero is a rational number.

### **Question 49:**

Every integer is a rational number but every rational number need not be an integer.

### **Question 50:**

Every negative integer is not a negative rational number.

### uestion 51:

If  $\frac{p}{q}$  is a rational number and m is a non-zero integer, then  $\frac{p}{q} = \frac{p \times m}{q \times m}$ 

### **Question 52:**

If  $\frac{p}{q}$  is a rational number and m is a non-zero common divisor of p and q, then  $\frac{p}{q} = \frac{p \div m}{q \div m}$ 

# **Question 53:**

In a rational number, denominator always has to be a non-zero integer.

### **Question 54:**

If  $\frac{p}{q}$  is a rational number and m is a non-zero integer, then  $\frac{p \times m}{q \times m}$  is a rational number not equivalent to  $\frac{p}{q}$ .

### **Question 55:**

Sum of two rational numbers is always a rational number.

### **Question 56:**

All decimal numbers are also rational numbers.

### **Question 57:**

The quotient of two rationals is always a rational number.

### **Question 58:**

Every fraction is a rational number.

# **Question 59:**

Two rationals with different numerators can never be equal.

# Question 60: 8 can be written as a rational number with any integer as denominator.

# Question 61:

 $\frac{4}{6}$  is equivalent to  $\frac{2}{3}$ 

# **Question 62:**

The rational number  $\frac{-3}{4}$  lies to the right of zero on the number line.

### **Question 63:**

The rational number  $\frac{-12}{15}$  and  $\frac{-7}{17}$  are on the opposite sides of zero on the number line.

### **Question 64:**

Every rational number is a whole number.

### **Question 65:**

Zero is the smallest rational number.

### **Question 66:**

Match the following:

| , I   | Column I                                 |     | Column II      |
|-------|------------------------------------------|-----|----------------|
| (i)   | $\frac{a}{b} + \frac{a}{b}$              | (a) | $\frac{-a}{b}$ |
| (ii)  | $\frac{a}{b} + \frac{c}{d}$              | (b) | - 1            |
| (iii) | $\frac{a}{b} + (-1)$                     | (c) | 1              |
| (iv)  | $\frac{a}{b} + \frac{-a}{b}$             | (d) | bc<br>ad       |
| (v)   | $\frac{b}{a} + \left(\frac{d}{c}\right)$ | (e) | ad<br>bc       |

### **Question 67:**

Write each of the following rational numbers with positive denominators.  $\frac{5}{-8}$ ,  $+\frac{15}{28}\frac{-17}{13}$ 

# **Question 68:**

Express  $\frac{3}{4}$  as a rational number with denominator: (a)36 (b) - 80

# **Question 69:**

Reduce each of the following rational numbers in its lowest form (i)  $\frac{-60}{72}$ (ii)  $\frac{91}{-364}$ 

# **Question 70:**

Express each of the following rational numbers in its standard form

(i) 
$$\frac{-12}{-30}$$
  
(ii)  $\frac{14}{-49}$   
(iii)  $\frac{-15}{35}$   
(iv)  $\frac{299}{-161}$ 

# **HIGHER LEVEL**

### **Question 71:**

Are the rational numbers  $\frac{-8}{28}$  and  $\frac{32}{-12}$  equivalent? Give reason.

# **Question 72:**

Arrange the rational numbers  $\frac{-7}{10}$ ,  $\frac{5}{-8}$ ,  $\frac{2}{-3}$ ,  $\frac{-1}{4}$ ,  $\frac{-3}{5}$  in ascending order.

# **Question 73:**

Represent the following rational numbers on a number line.  $\frac{3}{8}, \frac{-7}{3}, \frac{22}{-6}$ 

# Question 74:

If  $\frac{-5}{7} = \frac{\times}{28}$  find the value of x. Question 75: Give three rational numbers equivalent to (i)  $\frac{-3}{4}$ (ii)  $\frac{7}{11}$ 

### **Question 76:**

Write the next three rational numbers to complete the pattern:

(i) 
$$\frac{4}{-5}$$
,  $\frac{8}{-10}$ ,  $\frac{12}{-15}$ ,  $\frac{16}{-20}$ ,  $---$ ,  $---$ ,  $---$   
(ii)  $\frac{-8}{7}$ ,  $\frac{-16}{14}$ ,  $\frac{-24}{21}$ ,  $\frac{-32}{28}$ ,  $---$ ,  $---$ ,  $---$ 

### **Question 77:**

List four rational numbers between  $\frac{5}{7}$  and  $\frac{7}{8}$ .

### **Question 78:**

Find the sum of

(i) 
$$\frac{8}{13}$$
 and  $\frac{3}{11}$   
(ii)  $\frac{7}{3}$  and  $\frac{-4}{3}$ 

### **Question 79:**

Solve:

(i) 
$$\frac{29}{4} - \frac{30}{7}$$
 (ii)  $\frac{5}{13} - \frac{-8}{26}$ 

### **Question 80:**

Find the product of

(i) 
$$\frac{-4}{5}$$
 and  $\frac{-5}{12}$  (ii)  $\frac{-22}{11}$  and  $\frac{-21}{11}$ 

# Question 81:

Simplify:

(i) 
$$\frac{13}{11} \times \frac{-14}{5} + \frac{13}{11} \times \frac{-7}{5} + \frac{-13}{11} \times \frac{34}{5}$$
  
(ii)  $\frac{6}{5} \times \frac{3}{7} - \frac{1}{5} \times \frac{3}{7}$ 

**Question 82:** 

Simplify:

(i) 
$$\frac{3}{7} \div \left(\frac{21}{-55}\right)$$
 (ii)  $1 \div \left(-\frac{1}{2}\right)$ 

Question 83:

Which is greater in the following?

(i) 
$$\frac{3}{4}, \frac{7}{8}$$
 (ii)  $-3\frac{5}{7}, 3\frac{1}{9}$ 

# **Question 84:**

Write a rational number in which the numerator is less than '-7 x 11' and the denominator is greater than '12+ 4'.

# **Question 85:**

If  $x = \frac{1}{10}$  and  $y = \frac{-3}{8}$ , then evaluate x + y, x-y, xxy and  $x \div y$ .

# **Question 86:**

Find the reciprocal of the following:

(i) 
$$\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times 6\right)$$
  
(ii)  $\frac{20}{51} \times \frac{4}{91}$   
(iii)  $\frac{3}{13} \div \frac{-4}{65}$   
(iv)  $\left(-5 \times \frac{12}{15}\right) - \left(-3 \times \frac{2}{9}\right)$ 

# **Question 87:**

Complete the following table by finding the sums.

| +              | $-\frac{1}{9}$ | $\frac{4}{11}$   | $\frac{-5}{6}$ |
|----------------|----------------|------------------|----------------|
| $\frac{2}{3}$  |                |                  |                |
| $-\frac{5}{4}$ |                | $-\frac{39}{44}$ |                |
| $-\frac{1}{3}$ |                |                  |                |

### **Question 88:**

Write each of the following numbers in the form p/q, where p and q are integers.

- (a) six-eighths (b) three and half
- (c) opposite of 1(d) one-fourth(e) zero(f) opposite of three-fifths

# **Question 89:**

 $\frac{p}{q} = \square$ 

# **Question 90:**

Given that,  $\frac{t}{q}$  and  $\frac{r}{s}$  are two rational numbers with different denominators and both of them are in standard form. To compare these rational numbers, we say that

(a) 
$$\boxed{-} < \boxed{-}$$
, if  $p \times s < r \times q$   
(b)  $\frac{p}{q} = \frac{r}{s}$ , if  $- = --$   
(c)  $\boxed{-} > \boxed{-}$ , if  $p \times s > r \times q$ 

# **Question 91:**

In each of the following cases, write the rational number whose numerator and denominator are respectively as under:

| (a) 5-39 and 54-6         | (b) (- 4) x 6 and 8 ÷ 2 |
|---------------------------|-------------------------|
| (c) 35 ÷ (- 7) and 35 -18 | (d) 25 +15 and 81÷40    |

# **Question 92:**

Write the following as rational numbers in their standard forms.

| (a) 35%             | (b) 1.2           |
|---------------------|-------------------|
| (c) $-6\frac{3}{7}$ | (d) 240 + (- 840) |
| (e) 115 + 207       |                   |

# **Question 93:**

Find a rational number exactly halfway between

| (a) $\frac{-1}{3}$ and $\frac{1}{3}$   | (b) $\frac{1}{6}$ and $\frac{1}{9}$   |
|----------------------------------------|---------------------------------------|
| (c) $\frac{5}{-13}$ and $\frac{-7}{9}$ | (d) $\frac{1}{15}$ and $\frac{1}{12}$ |

**Question 94:** 

Taking 
$$x = \frac{-4}{9}$$
,  $y = \frac{5}{12}$  and  $z = \frac{7}{18}$ , find

(a) The rational number which when added to x gives y.

(b) The rational number which subtracted from y given z.

- (c) The rational number which when added to z gives us x.
- (d) The rational number which when multiplied by y to get x.
- (e) The reciprocal of x + y.
- (f) The sum of reciprocals of x and y.
- (g)  $(x + y) \times z$

(h) 
$$(x - y) + z$$

- (i) x + (y + z)
- (j) x + (y + z)
- (k) x (y + z)

### **Question 95:**

What should be added to  $\frac{-1}{2}$  to obtain the nearest natural number?

# **Question 96:**

What should be subtracted from  $\frac{-2}{3}$  to obtain the nearest integer?

# **Question 97:**

What should be multiplied with  $\frac{-5}{8}$  to obtain the nearest integer?

# **Question 98:**

What should be divided by  $\frac{-1}{2}$  to obtain the greatest negative integer?

### **Question 99:**

From a rope 68 m long, pieces of equal size are cut. If length of one piece is  $4\frac{1}{4}$  m, find the number of such pieces.

# **Question 100:**

If 12 shirts of equal size can be prepared from 27 m cloth, what is length of cloth required for each shirt?



### **Question 101:**

Insert 3 equivalent rational numbers between

(i) 
$$\frac{-1}{2}$$
 and  $\frac{1}{5}$ 

(ii) 0 and - 10

