

H.C.F AND L.C.M

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : H.C.F AND L.C.M SUBTOPIC :LCM ,Prime factor and Common Division Method PERIOD NO: 3

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

Learning outcomes

- Students will be able to find L.C.M. of given numbers .
- Students will develop application skill.
- Students will be able to solve problems based on LCM .

Previous Knowledge Test

Question 1.

Show that 45 and 56 are co-prime numbers.

Solution:

The HCF of two co-prime numbers is always HCF of 45 and 56

Negative numbers and Integers

- Students will Learn L.C.M with the help of a video .
- https://www.youtube.com/watch?v=ClkDcENjzBA(4.50)


```
Least Common Multiple of 5 and 7:
```

```
Multiples of 5: 5 ; 10 ; 15 ; 20 ; 25 ; 30 ; 35....
```

```
Multiples of 7: 7; 14; 21; 28; 35.....
```

```
The least common mutiple of 2 and 3 is 35
```


shutterstock.com · 1913482765

Program to find LCM of two numbers

LCM = Smallest Number that divides both $15 = 5 \times 3$ $25 = 5 \times 5$ Union of all factors = $5 \times 5 \times 3$ = 75

LCM by Common Division

Evaluation Question Exercise 8 C

1. Using the common multiple method, find the L.C.M. of the following: (i) 8, 12 and 24 (ii) 10, 15 and 20 (iii) 3, 6, 9 and 12 Solution: -8, 12 and 24 (i) -We get,

```
L.C.M = 4 \times 3 \times 2
= 24
Hence, L.C.M. of 8, 12 and 24 = 24
```

```
ii) 10, 15 and 20
```

```
We get,
L.C.M = 2 \times 2 \times 3 \times 5
= 60
Hence, L.C.M. of 10, 15 and 20 = 60
```

4	8	12	24
3	2	3	6
2	2	1	2
	1	1	1

2. Find the L.C.M. of each of the following groups of numbers, using (i) the prime factor method and (ii) the common division method:

- (i) 18, 24 and 96 (ii) 100, 150 and 200
- (iii) 14, 21 and 98 (iv) 22, 121 and 33 (v) 34, 85 and 51

Solution:

(i) 18, 24 and 96

By using prime factor method, L.C.M. of 18, 24 and 96 are given below

```
Prime factors of 18 = 2 \times 3 \times 3
```

```
Prime factors of 24 = 2 \times 2 \times 2 \times 3
```

Prime factors of $96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$

 $\therefore L.C.M. = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 288$

By using common division method, L.C.M. of 18, 24 and 96 are given below

 $\therefore L.C.M. = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$

= 288

2	18	24	96	
2	9	12	48	
2	9	6	24	
2	9	3	12	
2	9	3	6	
3	9	3	3	
3	3	1	6 3 1	
	1	1	1	

3. The H.C.F. and the L.C.M. of two numbers are 50 and 300 respectively. If one of the numbers is 150, find the other one.

```
Solution: H.C.F. = 50 L.C.M. = 300
```

```
One number = 150
```

We know that, Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers

 $50 \times 300 = 150 \times other number$

- 15000 / 150 = other number
- 100 = other number

Hence, the other number is 100

4. The product of two numbers is 432 and their L.C.M. is 72. Find their H.C.F.

Solution: Product of two numbers = 432 and L.C.M.= 72

We know that,

Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers.

Now, to find H.C.F

H.C.F. × 72 = 432

H.C.F.= 432 / 72

H.C.F. = 6

Hence, H.C.F. = 6

5. The product of two numbers is 19,200 and their H.C.F. is 40. Find their L.C.M. Solution: Given

Product of two numbers = 19200 and H.C.F. = 40

We know that,

Product of H.C.F. and L.C.M. of two numbers is equal to product of those two numbers

Now, to find L.C.M.

40 × L.C.M. = 19200

L.C.M. = 19200 / 40

L.C.M. = 480

Hence, L.C.M. = 480

6. Find the smallest number which, when divided by 12, 15, 18, 24 and 36 leaves no remainder.

Solution: The given numbers L.C.M. will be the least number which is exactly divisible 12, 15, 18, 24 and 36 and leaves no remainder

 $L.C.M. = 2 \times 2 \times 2 \times 3 \times 3 \times 5$ = 360

Hence, smallest required number = 360

2	12	15	18	24	36
2	6	15	9	12	18
2	3	15	9	6	9
3	3	15	9	3	9
3	1	5	3	1	3
5 1 1	1	5	1	1	1
	1	1	1	1	1

7. Find the smallest number which, when increased by one is exactly divisible by 12, 18, 24, 32 and 40.

Solution:

First, let us find out the L.C.M. of 12, 18, 24, 32 and 40

I C M	= 2	x 2	× 2 :	× 2 ×	2 x 3	x 3 x 5
L.C.IVI.	- 2	~ ~	~ ~ ~	$\sim 2 \sim$		$\sim 3 \sim 3$

= 1440

This can be written as

= 1439 + 1

Hence, 1439 is the smallest number which, when increased by one is exactly divisib the given numbers

2	12	18	24	32	40
2	6	9	12	16	20
2	3	9	6	8	10
2	3	9	3	4	5
2	3	9	3	2	5
3	3	9	3	1	5
3	1	3	1	1	5
5	1	1	1	1	5
	1	1	1	1	1

8. Find the smallest number which, on being decreased by 3, is completely divisible by 18,36, 32 and 27.218363232

Solution:

First, let us solve for L.C.M. of 18, 36, 32 and 27 L.C.M. = 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3 = 864

This can be written as

= 867 – 3

Hence, 867 is the smallest number which, when decreased by 3 is exactly divisible by the given numbers

Additional Homework

1. Using any method, find the L.C.M. of the following:

(i) 18, 132 and 524 (ii) 120, 150 and 200 HW Ex.8C

THANKING YOU ODM EDUCATIONAL GROUP

