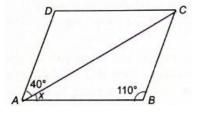
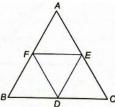

Chapter- 8

Quadrilaterals

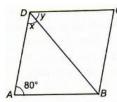

WORKSHEET

1	M	a	r	k

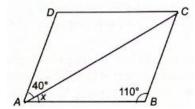
(1)	ABCD is a rhombus with \angle ABC = 40°. The measure of \angle ACD is						
	(a) 90°	(b)	20^{0}	(c) 40°	(d) 70 ⁰		
(2)	ABCD is a rectangle with \angle ABC = 32 $^{\circ}$. The measure of \angle DBC is						
	(a) 68°	(b)	32^{0}	(c) 112 ⁰	(d) 75 ⁰		
(3)	ABCD is a square. The measure of ∠BCA is						
	(a) 30°	(b) 45 ⁰	(c) 60°	(d) 75 ⁰	2		
(4)	If APB and CQD are two parallel lines, then the bisectors of the angles APQ,						
	BPQ, CQP	and POD fr	om				
	(a) a <mark>sq</mark> ua	re		(b) a rhombi	ıs		
	(c) a recta	angle		(d) any other	r parallelogram		
(5)	D and E are the mid-points of the sides AB and AC of Δ ABC and O is any						
	point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC						
	respectively, then DEQP is						
	(a) a squa	re	Chang	(b) a rectang	lemorrow 🖊		
	(c) a rhon	nbus		(d) a paralle	logram		
(6)	If the diagonals of a parallelogram are equal and perpendicular to ea						
(=)	•	en it is a					
(7)	The line-segment joining the midpoints of any two sides of a triangle is to the third side and is of it.						
(8)	A line drawn through the midpoint of a side of a triangle parallel to another						
	side the third side.						
(9)	In figure, ABCD is a rhombus. Find the values of x and y.						



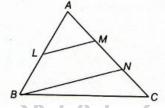
(10) In figure, ABCD is a parallelogram with $\angle B = 110^{\circ}$. Find the value of x.

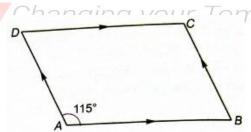

2 Marks

- (11) The angles of quadrilateral are in the ratio 1:3:5:6. Find its smallest angle.
- (12) Can the angles 110°, 80°, 70° and 95° be the angles of a quadrilateral? Why or why not?
- (13) Can all the four angles of a quadrilateral be obtuse angles? Give reason for your answer.
- (14) Can all the angles of a quadrilateral be acute angles? Give reason for your answer.
- (15) In figure, it is given that BDEF and FDCE are parallelograms. Can you say that BD=CD? Why or why not?

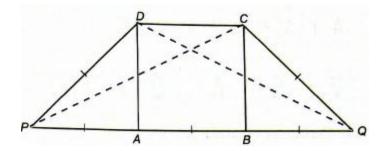


3 Marks

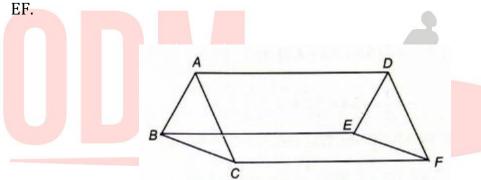

(16) In figure, ABCD is a rhombus. Find the values of x and y.


- (17) The angles of quadrilateral are in the ratio 1:3:5:6. Find its smallest angle.
- (18) In figure, ABCD is a parallelogram with $\angle B = 110^{\circ}$. Find the value of x.

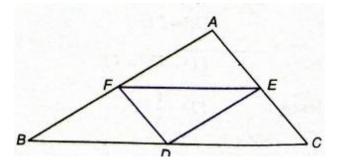
In figure, ABC is a triangle in which L is the mid-point of AB and N is a point on AC such that AN = 2CN. A line through L, parallel to BN, meets AC at M. Prove that AM = CN.

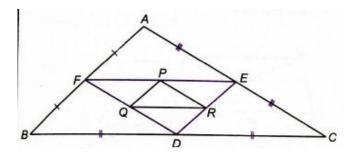


(20) In figure, ABCD is a parallelogram in which $\angle A = 115^{\circ}$. Find $\angle B$, $\angle C$ and $\angle D$.



4 Marks


(21) In figure, ABCD is a square. Side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP.


(22) In figure. AB||DE, AB = DE, AC||DF and AC=DF. Prove that BC||EF and BC=

- [23] In Fig. in \triangle ABC, D, E and F are the mid-points of BC, CA and AB respectively. Given BD = 3.5 cm, AC = 3.8 cm and DE=2.7 cm, find the lengths of
 - (i) FE (ii) FD C(iii) AFGING YO (iv) AB MORROW

[24] In figure, in \triangle ABC, D, E and F are the mid-points of BC, CA and AB respectively. P, Q an R are the mid-points of EF, FD and DE respectively. If AB = 3.6 cm, BC= 6.8 cm and CA = 4.8 cm, find the sides of the \triangle PQR.

(25) In figure L, M and N are the mid-points of AP, BP and CP respectively. Prove that the triangle ABC and LMN are equiangular.

