[THE SOLID STATE] CHEMISTRY WORKSHEET

Chapter 01 The Solid State

Very Short Answer Type Questions

- 01. How many atoms constitute one unit cell of a face-centered cubic (fcc) crystal?
- 02. What are non-stoichiometric compounds?
- **3.** The analysis shows that FeO has a non-stoichiometric composition with formula $Fe_{0.95}O$. Give reason.
- **04.** Account for the following. The conductivity of silicon increases by doping it with phosphorous.
- **05.** What is the maximum possible coordination number of an atom in an hcp crystal structure of an element?
- 06. What type of semiconductor is obtained when silicon is doped with boron?
- **07.** Express the relationship between the atomic radius and the edge length (a) in the bcc unit cell.
- **08.** What change occurs when AgCl is doppedwith CaCl₂.
- **09.** Write the type of magnetism observed when the magnetic moment is oppositely aligned and cancel out each other.
- 10. What is meant by an intrinsic semiconductor?
- 11. What type of magnetism is shown in the following alignment of magnetic moments

们们们们们

- **12.** What type of stoichiometric defect is shown by AgCl ?
- **13.** State the difference between Schottky and Frenkel defects. Which of these two changes the density of the solid?
- **14.** (i) Write the type of magnetism observed when the magnetic moments are aligned in parallel and anti-parallel direction in un-equal numbers.
- **15.** Account for the following:
 - (i) Phosphorus doped with silicon is a semiconductor.

(ii) Some of the glass objects recovered from ancient monuments look milky instead of being transparent.

- (iii) Schottky defect lowers the density of a solid.
- 16. (i) What type of non-stoichiometric point defect is responsible for the pink color of LiCl?
 - (ii) What type of stoichiometric defect is shown by NaCl?

ODM Educational Group

[THE SOLID STATE] CHEMISTRY WORKSHEET

- **17.** How would you account for the following:
 - (i) Frenkel defects are not found in alkali metal halides.
 - (ii) Impurity doped silicon is a semiconductor.
- **18.** Explain with suitable examples the following:
 - (a) n-type and p-type semiconductors
 - (b) F-centres
 - (c) Ferromagnetism.
- 19. How are the following properties of crystals affected by Schottky and Frenkel defects?
 - (i) Density (ii) Electrical conductivity.
- 20. (i) What type of stoichiometric defect is shown by KCl and why?
 - (ii) What type of semiconductor is formed when silicon is doped with As.
 - (iii) Which one of the following is an example of a molecular solid: CO_2 or SiO_2 .
 - (iv) What type of substance would make better magnet; ferromagnetic or Ferrimagnetic?

Long Answer Type Questions

- 21. (i) Based on the nature of intermolecular forces, classify the following solids: Sodium Sulphate, Hydrogen.
 - (ii) What happens when is doped with AgCl?
 - (iii) Why do ferromagneticsubstances show better magnetism than antiferromagnetic substances?
- **22.** Aluminum crystallizes in an fcc structure. The atomic radius of the metal is 125 pm. What is the length of the side of the unit cell of the metal?
- **23.** An element with density 2.8g cm^{-3} forms anfcc unit cell with edge length $4 \times 10^{-8} \text{cm}$. Calculate the molar mass of the element.
- **24.** An element 'x' (At mass = 40g mol^{-1}) having f.c.cstructures, has a unit cell edge length of 400 pm.

Calculate the density of 'X' and the number of unit cells in 4 g of 'X'. $(N_0 = 6.022 \times 10^{23} \text{ mol}^{-1})$

- **25.** Iron has a body-centered cubic unit cell with a cell edge of 286.65 pm. The density of iron is 7.87 g cm⁻³. Use this information to calculate Avogadro's number. (At. mass of Fe = 56 g mol⁻¹)
- **26.** An element with density 10g cm^{-3} forms a cubic unit cell with an edge length of $3 \times 10^{-8} \text{ cm}$. What is the nature of the cubic unit cell if the atomic mass of the element is 81 g mol^{-1} .

[THE SOLID STATE] CHEMISTRY WORKSHEET

- **27.** An element with density $11.2g \text{ cm}^{-3}$ forms anfcc lattice with an edge length of $4 \times 10^{-8} \text{ cm}$. Calculate the atomic mass of the element. Given $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- **28.** The well-known mineral fluorite is chemically calcium fluoride. It is known that in one unit cell of this mineral there are $4Ca^{2+}$ ions and $8F^{-}$ ions and that Ca^{2+} ion are arranged in anf.c.c. lattice. The F ions fill all the tetrahedral holes in the face-centered cubic lattice of Ca^{2+} ions. The edge of the unit cell is 5.46 x 10^{-8} cm in length. The density of the solid is 3.18 g cm⁻³. Use this information to calculate Avogadro's number (Molar mass of $CaF_2 = 78.08 \text{ g mol}^{-1}$)
- 29. Copper crystallizes with a face-centered cubic unit cell. If the radius of the copper atom is 127.8 pm. Calculate the density of the copper metal. (Atomic mass of Cu = 63.55u and Avogadro's number $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)
- **30.** An element with molar mass $27g \text{ mol}^{-1}$ forms a cubic unit cell with edge length $4.05 \times 10^{-8} \text{ cm}$. If its density is $2.7g \text{ cm}^{-3}$, what is the nature of the cubic unit cell?

