Chapter- 1 Relations And Functions

Types of Relation

Introduction:-

Relation from a set A to B:- Let A and B be two non-empty sets. Then a set R is said to be a relation from set A to set B if R is a subset of $A \times B$. i.e if $R \subseteq A \times B$.

Example:-

Let $R = \{1, 2, 3\}, B = \{2, 3, 4\}$ define $R = \{(a, b): 2a = b, a \in A, b \in B\}$

Show that R is a relation from A to B. Also find no of possible relations from A to B.

Relation on a set A:- Let A be any non-empty set. Then a set R is said to be a relation on A if R is a subset of $A \times A$. i.e $R \subseteq A \times A$.

Example:-

Let $A = \{1, 2, 3\}$ and define $R = \{(a, b) : 2a = b; a, b \in A\}$. Show that R is a relation on A. What is the possible number of relations on A.

Types of Relation:-

(1) Empty or void relation:- A relation R on the set A is called empty relation if no elements of A are related to any elements of A i.e $R = \phi$.

Example:-

Let $A = \{1, 2, 3\}$, define $R = \{(a, b): a - b = 12\}$. Show that R is an empty relation on set A.

(2) Universal Relation:- A relation R on a set A is called universal relation if each element of A is related to every element of A. i.e if $R = A \times A$.

Example:-

Let $A = \{1, 2\}$ and define $R = \{(a, b); a + b > 0\}$. Show that r is a universal relation on set A.

Note:- Void and universal relations are called trivial relations.

(3) Identity Relation:- A relation R on set A is called identity relation if every element of A is related to itself only. i.e if $R = \{(a, a) : a \in A\}$. The identity relation on set A is denoted by I_A .

Example:-

Let A ={1, 2, 3}, and the relation R defined by $R = \{(a, b): a - b = 0; a, b \in A\}$. Show that R is an identity relation.

(4) <u>Reflexive Relation</u>: A relation R on the set A is called reflexive relation if a R a for every $a \in A$. i.e if $(a,a) \in R$ for every $a \in A$.

Example:-

Check whether R_1 , R_2 , and R_3 are reflexive or not.

Example:-

The relation "equal to" in the set of Natural numbers is reflexive.

Note:- Identity and universal relations are reflexive, but empty relation is not reflexive. All reflexive relations are not an identity relation.

(5) <u>Symmetric Relation</u>:- A relation R on the set a is called symmetric relation if aRb implies b R

a, for every $a, b \in A$; if $(a, b) \in R \Rightarrow (b, a) \in R$ $a, b \in A$.

Example:-

Let A = $\{1, 2, 3\}$ define the relation R_1 , R_2 and R_3 on A as.

(i)
$$\mathbf{R}_1 = \{(1,1), (2,2), (1,2), (2,1)\}$$
 (ii) $\mathbf{R}_2 = \{(1,1), (2,2), (3,3)\}$

(iii)
$$\mathbf{R}_3 = \{(1,1), (2,2), (1,2), (2,1), (3,1)\}$$

Check whether R_1 , R_2 , and R_3 are symmetric or not.

Example:-

The relation parallel to in the set of the lines in a plane is symmetric.

Note:-

Identity and universal relation are symmetric

- \blacktriangleright Empty relation is also symmetric as there is no situation in which $(a,b) \in \mathbb{R}$.
- (6) <u>Transitive Relation</u>:- A relation R on the set A is called transitive relation if aRb and b R c imply a R c, for every a, b, c ∈ A. i.e if (a,b) ∈ R & (b,c) ∈ R ⇒ (a,c) ∈ R for every a, b, c ∈ A.

Example:-

Let $A = \{1, 2, 3\}$, define R_1 , R_2 , R_3 , R_4 on A as

(i)
$$\mathbf{R}_1 = \{(1,1), (1,2), (2,1), (2,2)\}$$
 (ii) $\mathbf{R}_2 = \{(1,1), (2,2)\}$

(iii)
$$\mathbf{R}_3 = \{(1,1), (1,2), (2,3)\}$$
 (iv) $\mathbf{R}_4 = \{(1,2), (1,3)\}$

Check R₁, R₂, R₃, and R₄ are transitive or not.

Example:-

The relation greater than on R is transitive.

Note:- If there is no situation in which $(a,b) \in R$ and $(b,c) \in R$, then the relation is transitive

Equivalence Relation and Equivalence Class

Equivalence Relation:- A relation R on a set A is called equivalence relation if R is reflexive, symmetric, and transitive.

Equivalence Class: - Let R be an equivalence relation on set A and let $a \in A$. Then we define the equivalence class of 'a' as

SIM

$$[a] = \{b \in A : b \text{ is related to a }$$

$$= \left\{ b \in \mathbf{A} : (b, a) \in \mathbf{R} \right\}$$

Example:-

$$A = \{1, 2, 3\}. Define the relations R_1, R_2, R_3, and R_4 on A as.$$
(i) $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$
(ii) $R_2 = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$
(iii) $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1)\}$

(iv)
$$R_4 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$$

Check whether R_1 , R_2 , R_3 , and R_4 are equivalence relations or not, if yes, then find the equivalence classes of all elements of set A.

Example:-

Prove that the relation R on Z, defined by $(a,b) \in R \Leftrightarrow a-b$ is divisible by 5 is an equivalence relation on Z.

Example:-

Show that the relation R on IR defined as $R = \{(a,b): a \le b^2\}$ is neither reflexive not symmetric nor transitive.

Example:-

Show that the relation R defined by $(a,b)R(c,d) \Rightarrow a+b=b+c$, $A \times A$ where $A = \{1,2,3,...,10\}$ is an equivalence relation. Hence write the equivalence class $[(3,4)]; a,b,c,d \in A$.

Example:-

Write the smallest and largest equivalence relation on the set $A = \{1, 2, 3\}$

Example:-

For the set $A = \{1, 2, 3\}$, define a relation R on the set A as follows.

 $R = \{(1,1), (2,2), (3,3), (1,3)\}$ write the ordered pair to be added to R to make it the smallest equivalence relation.

/Changing your Tomorrow 📕

Types of Function

Function from set A to set B:- Let A and B be two non-empty sets, then a function f from set A to set B is a rule (or map or correspondence) which associates each element of set A to exactly one element of set B. If f is a function from set A to set B, then we denote it by $f : A \rightarrow B$.

Example:-

Check whether the maps in the following diagram are functions or not.

- (1) The range of A under f is denoted by f(A).
- (2) If f(a) = b then, b is called an image of a under f, and a is called pre-image of b.
- (3) The range is always a subset of the co-domain.
- (4) If n(A) = p, n(B) = q, then the number of functions from A to B is $(q)^{p}$

Types of Functions:-

(1) One-one function or Injective function:- A function $f: A \rightarrow B$ is said to be one-one if no two elements of A have the same image. i.e if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$

$$\mathsf{Or} \ f(a) = f(b) \Longrightarrow a = b \ \mathsf{for all} \ a, b \in A.$$

Note:-

- (i) If a function $f: A \rightarrow B$ is not one-one then it is called many-one function
- (ii) if a function $f: A \rightarrow B$ is one-one then $n(A) \le n(B)$

(iii) If n(A) = p, n(B) = q, then no of one-one function from A to B

$$= \begin{cases} 0, & \text{if } p > q \\ {}^{q}P_{p} = \frac{q!}{(q-p)}, & \text{if } p \le q \end{cases}$$

Example:-

Check whether the function in the diagram are one-one or not.

On to function or subjective function:-

A function $f : A \rightarrow B$ is said to be onto if, for each $b \in B$, there exists $a \in A$ such that f(a) = b, we say that 'a' is pre-image of 'b'. In other words, f is onto if Range of f = co-domain of f, i.e if every element in B has a pre-image in A.

Note:-

- (i) If a function $f: A \rightarrow B$ is not onto then it is called into function.
- (ii) If a function $f: A \rightarrow B$ is onto then $n(A) \ge n(B)$

(iii) Let A be any finite set n(A) = p then no of onto function from A to A is p!

Check whether functions in the figure are onto?

Bijective Function:-

A function $f: A \rightarrow B$ is said to be bijective if it is both one-one and onto.

Examples:-

Let $A = \{1, 2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$ let $f : A \to B$ be defined by $f = \{(1, 5), (2, 6), (3, 7), (4, 8)\}$. Show that f is one-one and onto (bijective).

Composition of Function:-

The composition of two functions is a chain process in which the output of the first function becomes the input of the 2^{nd} function. Let $f : A \to B$ and $g : B \to C$ be two functions.

Exactly one element for every $x \in A$, there is exactly one element $f(x) \in B$. For $f(x) \in B$, there is exactly one element $g(f(x)) \in C$. This result is a new function from A to C as shown in the figure.

Let $f: A \to B$ and $g: B \to C$ be any two functions. Then the composition of f and g is a function $gof: A \to C$ defined as (gof)(x) = g(f(x)).

Examples – 01

Changing your Tomorrow 📕

If $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$ and $g(x) = 5x^2$. Find gof and fog show that fog \neq gof.

Examples-02

Let $f : \{2,3,4,5\} \rightarrow \{3,4,5,9\}$ and $g : \{3,4,5,9\} \rightarrow \{7,11,15\}$ be functions defined by

$$f = \left\{ (2,3), (3,4), (4,5), (5,5) \right\}$$

 $g = \{(3,7), (4,7), (5,11), (9,11)\}$

Then find gof. Whether fog is defined or not.

Notes:-

- > The composition gof exists if the range of $f \subseteq$ domain of g.
- > The composition fog exists if the range of $g \subseteq$ domain of f.
- It may be possible gof exists but fog does not exist
- gof and fog may or may not be equal.

Properties of the composition of Functions:-

- (1) Composition of functions is associative Let $f: A \rightarrow B, g: B \rightarrow Candg: C \rightarrow D$ then (hog)of = ho(gof)
- (2) Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.
 - (i) If both are one-one then gof is one-one
 - (ii) If both are onto then gof is onto.
- (3) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions such that $gof: A \rightarrow C$
 - (i) If gof is onto, then g is onto (ii) If gof is one-one then f is one-one
 - (iii) If gof is onto and g is one-one then f is onto
 - (iv) If gof is one-one and f is onto then g is one-one

Problems to work out:-

- (1) If the mapping f and g are given by $f = \{(1,2), (3,5), (4,1)\}, g = \{(2,3), (5,1), (1,3)\}$ write fog and gof.
- (2) Find gof and fog when $f: R \to R$ and $g: R \to R$ are defined by f(x) = 5x + 2 and $g(x) = x^2 + 6$
- (3) Let $f,g: R \to R$ be two functions defined as f(x) = |x| + x and g(x) = |x| x, $\forall x \in R$ then find fog(-3) and gof(-2).

(4) Let $f: R \to R$ be signum function as $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \text{ and } g: R \to R \text{, be the greatest} \\ -1 & \text{if } x < 0 \end{cases}$

integer function given by g(x) = [x]. Do fog and gof coincide in (0,1]?

Solution:-

Let
$$x \in (0,1)$$
 be any element
fog $(x) = f(g(x))$
 $= f([x])$
 $= f(0)$ as $x \in (0,1)$

= 0

Also (gof)(x) = g(f(x)) = g(1) = [1] = 1 as $x \in (0,1)$

 \therefore (fog)(x) \neq (gof)(x) for every x \in (0,1); so fog and gof does not coincide in (0,1]

The inverse of a Function:-

Let f be a one-one and on-to function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element $x \in A$. Such that f(x) = y, Also f being one-one this x must

 $x \in A \, \text{such that} \, f \left(x \right) = y \, .$ So we may define a function denoted

be unique. Thus for each $y \in B$, there exists a unique element

by $f^{-1} \operatorname{as} f^{-1} : B \to A$. Such that $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

The function $\,f^{\,-\!1}\,$ is called the inverse of f.

Definition (1)

Let $f : A \to B$ be both one-one & onto function, then $f^{-1} : B \to A$ is a function which associates to each y of B, a unique x of A such that f(x) = y is called the inverse of function f.

$$\therefore f^{-1}(y) = x \Leftrightarrow f(x) = y$$

Definition (2)

Another definition of the inverse function. Let $f : A \to B$ be one-one and onto function, then the function $g : B \to A$ such that $gof = I_A$ and $fog = I_B$, where I_A and I_B are identity functions on A and B respectively, is called the inverse of f i.e $g = f^{-1}$.

Notes:-

- If the inverse of a function f exists then f is called an invertible function.
- A function f is invertible if and only if f is one-one and onto.
- > The two definitions of the Inverse function given above are equivalent.
- > The domain of f^{-1} = Range of f and range of f^{-1} = domain of f.
- > $(f^{-1}of)(x) = x, \forall x \in \text{domain of f i.e } f^{-1}of$ is an identity function.
- $\blacktriangleright \quad \left(f^{-1}\right)^{-1} = f$
- > If f is one-one and onto then f^{-1} is also one-one and onto.

Working Rule to find Inverse of a Function:-

Let $f: A \rightarrow B$ defined by y = f(x)

Step – I:- Prove that f is one-one i.e take $f(x_1) = f(x_2)$ and show that $x_1 = x_2$

Step – II:- Prove that f is onto i.e for any $y \in B$, there exists $x \in A$ s.t.f (x) = y

Step – III:- Find x in terms of y from y = f(x) let x = g(y) then $g(y) = f^{-1}(y)$

Example -1

Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible, find the inverse of f.

Example-2

Show that $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 1$ is not invertible.

Properties:-

- (1) If $f: X \to Y$ g: $Y \to Z$ are be two invertible functions. Then gof is also invertible with $(gof)^{-1} = f^{-1}og^{-1}$.
- (2) If $f: X \rightarrow Y$ is invertible, then its inverse is unique.
- (3) If $f: X \rightarrow Y$ is invertible then $f^{-1}of = I_x$ and $fof^{-1} = I_y$
- (4) Let $f: X \to Y$ and $g: Y \to X$ be two functions such that $gof = I_X$ and $fog = I_Y$ then f and g are bijections and $g = f^{-1}$.

Example-3

If A = {a, b, c, d} and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$. Write f^{-1} .

Example-4

Consider $f: \{1,2,3\} \rightarrow \{a,b,c\}$ given by f(1) = a, f(2) = b, f(3) = c. Show that $(f^{-1})^{-1} = f$.

Example – 5

If
$$f(x) = \frac{4x+3}{6x-4}$$
, $x \neq \frac{2}{3}$ show that for $(x) = x$ for all $x \neq \frac{2}{3}$. What is the inverse of f?

Problem – 01

For onto $Range \; f = R^+ U \left\{ 0 \right\} \;$ Co-dom of f = R

As Range $f \neq co$ -dom f so f is not onto

Problem – 3

Consider $f: \mathbb{R}_+ \rightarrow [-5, \infty)$, given by $f(x) = 9x^2 + 6x - 5$.

Show that f is invertible wth $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$

Problem – 4

Give an example of a function

(i) Which is one-one but not onto (ii) Whi

(ii) Which is not one-one but onto

(iii) Which is neither one-one nor onto.

Solution:-

- (i) Let $A = \{1,2\}, B = \{4,5,6\}$ and let $f = \{(1,4), (2,5)\}$. Since every element of A has different images is B so f is one-one. Also, the element $6 \in B$ does not have a pre-image is A. So f is not onto
- (ii) Let $A = \{1, 2, 3\}, B = \{4, 5\}$ and $g = \{(2, 4), (1, 4), (3, 5)\}$ Since $1, 2 \in A$ have same image 4 is B. So g is not one-one. Also, every element of in B has a pre-image is A, so g is onto
- (iii) $A = \{1, 2, 3\}, B = \{4, 5\}$ and $h = \{(1, 4), (2, 4), (3, 4)\}$. Since elements $1, 2, 3 \in A$ have the same image 4 in B. So h is not one-one. Also, the element $5 \in B$ does not have a pre-image in A so h is not onto.

Problem – 5

Show that a one-one function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ must be onto.

Solution:- Give that $f : A \rightarrow B$ is a one-one function. Where $A = B = \{1, 2, 3\}$.

Since $f:A \to B$ is one-one

[RELATIONS AND FUNCTIONS] | MATHEMATICS | STUDY NOTES

 $\therefore n(A) \le n(B)$(1)

Suppose that $\,f:A\,{\rightarrow}\,B\,$ is not onto

:: n(A) < n(B).....(2)

So from (1) and (2), we get n(A) < n(B) which is a contradiction, as n(A) = n(B) = 3.

Hence f is onto

Problem – 6

Show that an onto function $f : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ is always one-one

Solution:-

Given that $f : A \rightarrow B$ is onto,

Where $A = B = \{1, 2, 3\}$

Since $f : A \rightarrow B$ is onto

 $n(A) \ge n(B)$(1)

Suppose that $f: A \rightarrow B$ is not one-one

 $n(A) \ge n(B)$(2)

From (1) and (2) we get n(A) > n(B) which is a contradiction as n(A) = n(B) = 3

Hence f is one-one.

Problem -7:-

(a) Write total number of functions from $\{1, 2\}$ to $\{x, y, z\}$

Answer: $(3)^2 = 9$ as no of functions from A to B is $[n(B)]^{n(A)}$

(b) Write total number of one-one functions from $\{1, 2\}$ to $\{x, y, z\}$

Answer:
$${}^{3}P_{2} = \frac{3!}{(3-2)!} = 6$$

(c) Find the total number of onto functions from set $\{x, y, z\}$ to $\{1, 5, 25, 125\}$.

Answer:- 0 As n(A) < n(B) so no of onto function is 0

(d) Find the total number of bijective functions from set {x, y, z} to { α,β,γ }

Answer:- 3! As n(A) = n(B) = n, no of bijectiions

(e) if f(x) = |x| and g(x) = [x] find (fog) (-1.5) and (gof) (-1.5)

Answer:- 2 ; 1

Problem - 8:

If the function $f: R \to R$ be defined by f(x) = 2x - 3 and $g: R \to R$ by $g(x) = x^3 + 5$. Then find fog and show that fog is invertible. Also find $(fog)^{-1}$, Hence find $(fog)^{-1}(9)$.

alional i

Solution:-

Here $f: R \rightarrow R$ defined by $fog(x) = f(g(x)) = f(x^3 + 5) = 2(x^3 + 5) - 3 = 2x^3 + 7$. Now to prove fog is invertible. One-one:- Let $x_1, x_2 \in Rand(fog)(x_1) = (fog)(x_2)$

$$\Rightarrow$$
 2x₁³ + 7 = 2x₂³ + 7

 \Rightarrow $\mathbf{x}_1^3 = \mathbf{x}_2^3 \Rightarrow$ $\mathbf{x}_1 = \mathbf{x}_2$

So fog is one-one Onto:- let $y \in R$ be any element then fog(x) = y

For every, $y \in R$ we have $x \in R$ so fog is onto.

Thus, fog is an invertible function so $(fog)^{-1} : R \to R$ exists and from (1)

$$(fog)^{-1}(y) = \sqrt[3]{\frac{y-7}{2}}; (fog)^{-1}(9) = \sqrt[3]{\frac{9-7}{2}} = 2$$

Problem - 9:-

If the function $f(x) = \sqrt{2x-3}$ is I veritable, then find f^{-1} . Hence prove that $(fof^{-1})(x) = x$.

Solution:-

Given $f: R \to R$ defined by $f(x) = \sqrt{2x-3}$

One-one: Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$

$$\Rightarrow \sqrt{2x_1 - 3} = \sqrt{2x_2 - 3}$$

 \Rightarrow 2x₁-3=2x₂-3

$$\Rightarrow$$
 x₁ = x₂

So f is one-one

Onto:- Let $y \in R$ be any element then f(x) = y

So f is onto. Thus f is on invertible function so $f^{-1}: R \rightarrow R$ exists and from (1) we have

$$f^{-1}(y) \!=\! \frac{y^2 + 3}{2}$$

The inverse of f is given by $f^{-1}(x) = \frac{x^2 + 3}{2}$

$$= f\left(\frac{x^2+3}{2}\right) = \sqrt{2\left(\frac{x^2+3}{2}\right)-3}$$

FDUCATIONAL GROUP

Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as f(x) = 2x, g(y) = 3y + 4 and f(x) = sinxfor all $x, y, z \in N$. Show that ho(gof) = (hof)of

Solution:-

Given $f:N \rightarrow N$, defined by $f(x)=2x;g:N \rightarrow N$ defined by

g(y)=3y+4 and $h:N \rightarrow R$, h(x)=sinx

Now ho(gof): $N \rightarrow R$ such that [ho(gof)](x) = h[gof(x)]

=h(g(f(x)))=h(g(2x))

Given $f: R \rightarrow R f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$ and $g: R \rightarrow R$ defined by g(x) = |x|

Let $x \in (0,1)$ be any element

Then (fog)(x) = f(g(x))

$$= f(|\mathbf{x}|)$$

= f(0) = 0

Also (gof)(x) = g(f(x))

=g(1)=[1]=1

 \therefore (fog)(x) \neq (gof)(x), for every x \in (0,1] Hence, fog and gof do not coincide in (0,1)

Example:-12

Let $A = \{1, 2, 3\}$ and $B = \{5, 6, 7\}$. Let the functions $f : A \rightarrow B$ and $g : A \rightarrow B$ be defined by

 $f = \{(1,5), (2,6), (3,7)\}$ and $g = \{(2,5), (1,6), (3,7)\}$. Show that $f \neq g$.

Solution:-

Given $A = \{1, 2, 3\}$ and $B = \{5, 6, 7\}$

Also, given that $f = \{(1,5), (2,6), (3,7)\}$ and $g = \{(2,5), (1,6), (3,7)\}$

Since, $f(1) = 5 \neq g(1)$

Therefore, $f(x) \neq g(x)$ for some $x \in A$. Hence, $f \neq g$