Chapter- 1 Relations and Functions

- 1. The relation $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$ on set $A = \{1, 2, 3\}$ is
 - a) Reflexive but not symmetric b) Reflexive but not transitive
 - c) Symmetric and transitive d) Neither symmetric nor transitive
- 2. Fill in the blank: Let the relation R be defined in N by a R b if 2a + 3b = 30. Then R =
- State the reason for the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} not to be transitive.
- 4. Let R be a relation in the set of natural numbers N defined by $R = \{(a, b) \in N \times N : a < b\}$. Is relation R reflexive. Give a reason.
- 5. Given set $A = \{3, 4, 5, 6\}$. Let R be the relation in set A and defined as $R = \{(a, b): a + b \le 12, a, b \in A\}$. Is this relation symmetric?
- 6. Let $A = \{a, b, c\}$, find the total number of distinct relations in set A.
- 7. Let $A = \{a, b, c\}$. Write the smallest and largest equivalence relations on A.
- 8. Write $X = \{x, y\}$ and an equivalence relation on X defined as $R = \{(x, x), (x, y), (y, y), (y, x)\}$. How many equivalence classes are there?
- 9. Let *A* be any non-empty set and *P*(*A*) be the power set of *A*. A relation *R* defined on P(A)by $X R Y \Leftrightarrow X \cap Y = X$, $X, Y \in P(A)$. Examine whether *R* is symmetric.
- 10. If R_1 and R_2 are symmetric, then prove that $R_1 \cup R_2$ is symmetric.
- 11. If Z is the set of all integers and R is the relation defined on Z defined as $R = \{(a, b): a, b \in Z \text{ and } a b \text{ is divisible by } 5\}$. Prove that R is an equivalence relation.
- 12. Show that the relation *R* in the set of integers given by $R = \left\{ (a, b) : \frac{a}{b} \text{ is a power of } 3 \right\} \text{ is an equivalence relation.}$

ODM Educational Group

[RELATIONS AND FUNCTIONS] | Mathematics | Worksheet

- 13. Let *R* be a relation on the set of all lines in a plane defined by ' is parallel to', *i.e.* $(l_1, l_2) \in R \Leftrightarrow l_1 || l_2$. Show that *R* is an equivalence relation.
- 14. If *N* denote the set of all natural numbers and *R* be the relation on $N \times N$ defined by (a, b)R(c, d) if ad(b + c) = bc(a + d). Show that *R* is an equivalence relation.
- 15. Show that the relation *R* in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a b| \text{ is divisible by 2}\}$ is an equivalence relation. Write all the equivalence classes of *R*.
- 16. Relation R defined in a set of real numbers as $R = \{(x, y): x + y \text{ is divisible by } 5 \forall x, y \in R\}$. Show that R is neither reflexive nor transitive but symmetric.
- 17. Set *A* has three elements and set *B* has four elements. The number of injections that can be defined from *A* to *B* is
 - a) 144 b) 12 c) 24 d) 64
- 18. If the set *A* contains 5 elements and the set *B* contains 6 elements, then the number of one-one and onto mapping from *A* to *B* is

19. Let the function $f: R \to R$ be defined by $f(x) = cosx, \forall x \in R$. Show that f is neither one-one nor onto.

20. Let
$$f(x) = \frac{x-1}{x+1}$$
 then $f(f(x))$ is
a) $\frac{1}{x}$ b) $-\frac{1}{x}$ c) $\frac{1}{x+1}$ d) $\frac{1}{x-1}$
21. If $f(x) = \frac{3x+2}{5x-3}$, then $(fof)(x)$ is
a) x b) $-x$ c) $f(x)$ d) $-f(x)$
22. Fill in the blank: Let $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(2,3), (5,1), (1,3)\}$. Then $gof = (2,3), (5,1), (1,3)\}$.

- 23. If f(x) = x + 7 and g(x) = x 7, $x \in R$ then find fog(7).
- 24. Let $f: R \to R$ be defined by $f(x) = x^2 3x + 2$, find fof(x).
- 25. If functions $f: A \to B$ and $g: B \to A$ satisfy $gof = I_A$, then show that f is one-one and g is onto.

26. If
$$f(x) = \left(\frac{x-2}{x-1}\right), x \neq 1$$
 and $g(x) = \left(\frac{3x+1}{x+1}\right), x \neq -1$, find $gof(x)$.

ODM Educational Group

- 27. If the function $f : R \to R$ is given by $f(x) = x^2 + 2$ and $g: R \to R$ is given by $g(x) = \frac{x}{x-1}$, $x \neq 1$, then find $f \circ g$ and $g \circ f$ and hence find $f \circ g(2)$ and $g \circ f(-3)$.
- 28. If $f : R \to R$ is defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = I_R$
- 29. If $f, g: R \to R$ be two functions defined as f(x) = |x| + x and $g(x) = |x| x, \forall x \in R$. Then find *fog* and *gof*. Hence fog(-3), fog(5) and gof(-2).
- 30. Show that the function $f : R \to R$ defined by $f(x) = \frac{x}{x^2+1} \forall x \in R$ is neither one-one nor onto. Also, if $g: R \to R$ is defined as g(x) = 2x 1, find fog(x).
- 31. Let $f: R \to R$ be the functions defined by $f(x) = x^3 + 5$. Then $f^{-1}(x)$ is
- a) $(x+5)^{\frac{1}{3}}$ b) $(x-5)^{\frac{1}{3}}$ c) $(5-x)^{\frac{1}{3}}$ d) 5-x32. If $f: [1, \infty) \to [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$, then $f^{-1}(x)$ equals
 - a) $\frac{x+\sqrt{x^2-4}}{2}$ b) $\frac{x}{1+x^2}$ c) $\frac{x-\sqrt{x^2-4}}{2}$ d) $1+\sqrt{x^2-4}$
- 33. Let $f: A \to B$ and $g: B \to C$ be the bijective functions. Then $(gof)^{-1}$ is
 - a) $f^{-1}og^{-1}$ b) fog c) $g^{-1}of^{-1}$ d) gof
- 34. Consider a bijective function $f: R_+ \to (7, \infty)$ given by $f(x) = 16x^2 + 24x + 7$, where R_+ is the set of all positive real numbers. Find the inverse function of f.
- 35. If $f: W \to W$ is defined as f(x) = x 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers.
- 36. Show that the function f in $A = R \left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto. Hence find f^{-1} .
- 37. Consider $f: \mathbb{R}^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where \mathbb{R}^+ is the set of all non-negative real numbers.
- 38. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to S$, where S is the range of f, is invertible. Also, find the inverse of f.
- 39. A function $f: A \to B$ is defined as $f(x) = \frac{x-5}{x-4}$ and $g(x) = \frac{4x-5}{x-1}$, where $A = R \{4\}$ and $B = R \{1\}$. Show that (i) gof(x) = x (ii) fog(x) = x and hence find (iii) $f^{-1}(x)$ and $g^{-1}(x)$.

ODM Educational Group