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Chapter-4  

Moving Charges And Magnetism 
Concept  of Magnetic Field 

Just as stationary charges produce an electric field  E , moving charges or electric currents produce a 

magnetic field  B in addition to the electric field. It is also a vector field 

and defined at each point in space. The magnetic field at a point can also 

vary with time. We found that the needle got aligned tangentially at any 

point on an imaginary circle with the current-carrying wire passing through 

its center and perpendicular to its plane figure. 

Source of Magnetic Field:- 

 The magnetic field has several characteristics similar to the electric field. 

 The magnetic field at a point can be due to a number of moving charges. In such cases, the net 

magnetic field is given by the vector sum of the magnetic fields due to individual sources. 

 The concept of the magnetic field is very useful in understanding the magnetic environment 

produced by moving charges. It is the region of space around a current-carrying conductor or a 

magnet, in which the magnetic influence can be felt by a magnetic needle. 

  SI unit of the magnetic field is 1 1NA m   or tesla (T) 

 41T 10 Gauss  

 Dimension:- 
 
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Symbols of Magnetic field on the plane of the paper 

(a)  Magnetic lines of force from N to S    

(b) Magnetic field Emerging out  

(c) The magnetic field in to 

Oersted’s Experiment:- 

  

  

  

N S
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Consider a magnetic needle SN pivoted over a stand. Hold a wire AB parallel to the needle SN and 

connect it to a cell and a plug-key, as shown in the figure. 

It is observed that:- 

 When the wire is held above the needle and the current flows from the south to the north, the 

north pole of the magnetic needle gets deflected towards the west, (as shown in the figure). 

 When the direction of the current is reversed, so that it flows from the north to the south, the 

north pole of the magnetic needle gets deflected towards the east, (as shown in the figure). 

From Experimental Observation:- 

 On reversing the current in the wire, the orientation of the needle also 

reverses. 

 On increasing the current or bringing the needle closer to the wire, the 

deflection of the needle also increases. 

 When the wire is placed below the needle, the direction of the deflection 

of the needle is again reversed. 

 When the current in the wire is stopped flowing, the magnetic needle comes back into its initial 

poison. 

Conclusion:- 

Since a magnetic needle can be deflected by a magnetic field only, it 

follows from the above experiment that a current-carrying conductor 

produces a magnetic field. 

Biot-Savart Law:- 

Introduction:- Oersted experiment showed that a current-carrying conductor produces a magnetic 

field around it.  

Assumption:-It is convenient to assume that this field is made of contributions from different segments 

of the conductor, called current elements. A current element is denoted by I d ,  

Statement:- 

As shown in figure consider a current element d  of conductor XY carrying 

current I. Let P be the point where the magnetic field dB  due to the current 
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element d  is to be calculated. Let the position vector of point P relative to element d  be r . Let   

be the angle between d  and r . 

According to Biot-Savart law, the magnitude of the field dB  is 

(a) Directly proportional to the current I through the conductor, dB I  

(b) Directly proportional to the length d  of the current element, dB d  

(c) Directly proportional to sin , dB sin   

(d) Inversely proportional to the square of the distance r of the point P from the current element, 

2

1
dB

r
  

Combining all these four factors, we get 

2

Id sin
dB

r


 Or 

2

Id sin
dB K.

r


  

If 0I 1A,d 1m,r 1mand 90      so that sin 1   then 

0dB
4





, Where 0  is called the permeability of free space (or vacuum) 

7
74 10

10 tesla
4




 


 

Definition of Tesla:- 

Thus, one tesla is 107 times the magnetic field produced by a conducting wire of length one meter and 

carrying a current of one ampere at a distance of one meter from it and perpendicular to it. 

Biot- Savart Law vs. Coulomb’s Law. 

Points of similarity:- 

 Both fields depend inversely on the square of the distance from the source to the point of 

observation. 

 Both are long-range fields 
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 The principle of superposition is applicable to both fields.  

Points of difference:- 

 The magnetic field is produced by a vector source: the current element Id . The electrostatic field 

is produced by a scalar source: the electric charge dq. 

 The direction of the electrostatic field is along the displacement vector joining the source and the 

field point. The direction of the magnetic field is perpendicular to the plane containing the 

displacement vector r  and the current element Id . 

 In Biot-Savart law, the magnitude of the magnetic field is proportional to the sine of the angle 

between the current element Id  and displacement vector r  while there is no such angle 

dependence is the Coulomb’s law for the electrostatic field. Along the axial line of the current 

element o0 ,sin 0    and hence dB 0  

Memory Boost:- 

Question – 01 

Write a relation between 0 0, andc  .  

. We know that 9 2 2

0

1
9 10 Nm C

4

 


And 7 10 10 TmA
4

 



 

0 0
0 0

4

4 1

   
     

  
 

 
7

29 8

1 1
10

9 10 3 10

  
 

 

But 8 13 10 ms = speed of light in a vacuum (c) 

0 0 2

1

c
     Or 

0 0

1
c 

 
, the unit of 0 - 

TM

A

 
 
 

, Dimension of 1 1 2 2

0 M LT A       

Example – 2 

A wire placed along the north-south direction carries a current of 8A from south to north. Find the 

magnetic field due to a 1 cm piece of wire at a point 200 cm northeast from the piece. 

Solution:- 

As the distance OP is much larger than the length of the wire, we can treat the wire as a small current 

element. 
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Here 2I 8A,d 1cm 1 10 m    0r 200cm 2m, 45     

0

2

Id sin
dB .

4 r

 



 

2 o

2

8 1 10 sin 45

2

  
  

91.4 10 T  The direction of the magnetic field at point P is normally into the plane of the paper. 

Example – 3 

An element ˆxi    is placed at the origin and carries a large current I 10A . What is the magnetic 

field on the y-axis at a distance of 0.5m. x 1cm  .   (NCERT Example 4.5) 

Magnetic Field on the axis of a circular current loop:- 

Consider a circular loop of wire of radius a and carrying 

current I, as shown in the figure. Let the plane of the loop 

be perpendicular to the plane of the paper. We wish to 

find the field B  at an axial point P at a distance r from 

the center C.  

Consider a current element d  at the top of the loop. It has an outward coming current. It s  is the 

position vector of point P relative to the element d , then from Biot-Savart law, the field at point P 

due to the current element is 

0

2

Id sin
dB .

4 s

 



 

Since 0d s,i.e, 90    therefore 0

2

Id
dB .

4 s





 

The field dB  lies in the plane of the paper and is perpendicular to s , as shown by PQ . Let   be the 

angle between OP and CP. Then dB can be resolved into two rectangular components. 

(a) dBsin  along the axis  (b) dBcos  perpendicular to the axis 

For any two diametrically opposite elements of the loop, the components perpendicular to the axis of 

the loop will be equal and opposite and will cancel out. Their axial components will be in the same 

direction, i.e, along CP and get added up. 

 The total magnetic field at point P in the direction CP is. 
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B dBsin   

But 0

2

a Id
sin anddB .

s 4 s


  


 

0

2

Id a
B . .

4 s s


 

  

Since 0 and I are constant, and s and a are the same for all points on the circular loop, we have. 

2

0 0 0

3 3 3

Ia Ia Ia
B d .2 a

4 s 4 s 2s

  
   

   or 
 

2

0

3/2
2 2

Ia
B

2 r a





 

As the direction of the field is along +ve X-direction, so we can write 
 

2

0

3/2
2 2

Ia ˆB i
2 r a





 

If the coil consists of N turns, then 
 

2

0

3/2
2 2

NIa
B

2 r a





 

The direction of the magnetic field:- 

The figure shows the magnetic lines of force of a circular wire carrying 

current. The lines of force near the wire are almost concentric circles. As we 

move radically towards the Centre of the loop, the concentric circles become larger and larger i.e, the 

lines of force become less and less curved. If the plane of the circular loop is held perpendicular to the 

magnetic meridian, the lines at the center art almost straight, parallel, and perpendicular to the plane 

of the loop. This the magnetic field is uniform at the center of the loop.  

Rules for finding the direction of a magnetic field due to a circular current loop. Either of the following 

two rules can be used for finding the direction of B . 

(a)Right-hand thumb rule. If we curl the palm of our right hand around the 

circular wire with the fingers pointing in the direction of the current, then 

the extended thumb gives the direction of the magnetic field. 
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(b) Clock rule:- This rule gives the polarity of any face of the circular current loop. If the current round 

any face of the coil is in the anticlockwise direction, it behaves like a north pole. If the current flows 

in the clockwise direction, it behaves like a south pole.  

Variation of the magnetic field along the axis of a circular current loop. The 

figure shows the variation of the magnetic field along the axis of a circular loop 

with the distance from its center. The value of B is maximum at the center, and it 

decreases as we go away from the center, on either side of the loop.  

Example:- The plane of a circular coil is horizontal. It has 10 turns each of a radius 8cm. a current of 

1A flows through it. The current appears to flow clockwise from a point above the coil. Find the 

magnitude and direction of the magnetic field at the center of the coil due to the current. 

Solution:- 

Here N = 10, r = 8 cm = 0.8 m, I = 2A 

7
40NI 4 10 10 2

B 1.57 10 T
2r 2 0.08


   

    


 

As the current flows clockwise when seen from above the coil, the magnetic field at the center of the 

coil points vertically downwards. 

Example:- In the Bohr model of the hydrogen atom, an electron revolves around the nucleus in a 

circular orbit of radius 115.11 10 Hz. What radius 115.11 10 m at a frequency of 156.8 10 Hz . What 

is the magnetic field set up at the center of the orbit? 

Solution:- 

It n is the frequency of revolution of the electron, then 

15 19I ne 6.8 10 1.6 10      

46.8 1.6 10 A    

0IB
2r


   
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7 4

11

4 10 6.8 1.6 10
13.4T

2 5.11 10

 



   
 

 
 

Example:-The radius of the first orbit of the hydrogen atom is 
o

0.5A . The electron moves in an orbit 

with a uniform speed of 6 12.2 10 ms . What is the magnetic field produced at the center of the 

nucleus due to the motion of this electron? Use 7 2

0 / 4 10 NA     and electronic charge = 

191.6 10 C  

Solution:- 

Here 
o

10 6 1r 0.5A 0.5 10 m,v 2.2 10 ms       

Period of revolution of the electron, 

10
15

6

2 r 2kt22 0.5 10 1
T 10 s

v 7 2.2 10 7


  

   
 

 

Equivalent Current, 

19
3

15

ch arge e 1.6 10 7
I 1.12 10 A

time T 10






 
      

The magnetic field produced at the center of the nucleus, 

7 3

0

10

I 4 10 1.12 10
B 14.07T

2r 2 0.5 10

 



   
  

 
 

Example: -A circular coil, having 100 turns of wire, of the radius (nearly) 20 cm each, lies in the XY 

plane with its center at the origin of coordinates. Find the magnetic field, at the point 

 0,0,20 3cm c , when this coil carries a current of 
2

A
 
 
 

. 

Solution:- 

2
N 100,a 20cm 0.2mz 20 3cm 0.2 3m,I A     


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The coil lies in XY-plane and the field point  0,0,20 3 lies on the z-axis 

The magnetic field at the axial field point, 

 

 

   

27

2

0

3/2 3/2
22 2 2

2
4 10 100 0.2

NIa
B T

2 a z 2 0.2 0.2 3

  
       
  
  

 

   

5 5

3 3/2

4 10 0.04 0.16 10
T T

2 0.008 82 0.2 1 3

   
 

 
 

4 61
10 T 25 10 T 25 T

8

     
 

Example:-The magnetic field due to a current-carrying circular loop of radius 12 cm at its center is 

40.50 10 T . Find the magnetic field due to this loop at a point on the axis at a distance of 5.0 cm 

from the center. 

Solution:- 

 

2

0 0
centre axial 3/2

2 2

I Ia
B and B

2a 2 a r

 
 


 

 

3

axia

3/2
2 2

centre

B a

B a r
 


 or 

 

3

axial centre3/2
2 2

a
B B

a r
 


 

Here 2 2a 12cm 12 10 m,r 5cm 5 10 m        

4

centreB 0.50 10 T   

 
3

2

4

axial 3/2
4 4

12 10
B 0.50 10 T

144 10 25 10





 


   

    

 

 
3 4

5
12 0.50 10

3.9 10 T
169 13




 

  

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Example:-Two identical circular coils of radius 0.1m, each having 20 turns are mounted coaxially 

0.1m apart. A current of 0.5A is passed through both of them  

(i) in the same direction  

(ii) in the opposite directions. Find the magnetic field at the center of each coil. 

Solution:- 

Here a 0.1m,N 20,r 0.1m,I 0.5A    . The magnetic field at the center of each coil due to its own 

current is 

7
50

1

NI 4 10 20 0.5
B 6.28 10 T

2a 2 0.1


   

   


 

The magnetic field at the center of one coil due to the current in the other coil is 

 

2

0
2 3/2

2 2

NIa
B

2 a r





 

 

     

27 7

3/2 3/2
2 22

4 10 20 0.5 0.1 0.628 10

2 0.1 0.1 2 0.1

     
 

    
   

 

7
5

3

0.628 10
2.22 10 T

2 2 10







  


 

(i) When the currents are in the same direction, the resultant field at the center of each coil is 

 5 5

1 2B B B 6.28 10 2.22 10        58.50 10 T   

(ii) When the currents are in opposite directions, the resultant field is 

 5 5 5

1 2B B B 6.28 10 2.22 10 4.06 10 T           

Example:-Two coaxial circular loops 1 2L andL  of radii 3 cm and 4 cm are 

placed as shown. What should be the magnitude and direction of the 

current in the loop 2L  so that the net magnetic field at the point O be 

zero? 
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Solution:- 

For the net magnetic field at point O to be zero, the direction of current in loop L2 should be opposite 

to that in loop L1. 

The magnitude of the magnetic field due to current I1 in L1 = Magnitude of the magnetic field due to 

current I2 in L2 

or 
 

   

 

   

2 2

0 1 0 2

3/2 3/2
2 2 2

I 0.03 I 0.04

2 0.03 0.04 2 0.04 0.03

 


    
   

 

 

 

2

2 12

0.03
I I

0.04
  

9
1A 0.56A

16
    

Example: -A long wire having a semi-circular loop of radius r carries a current I, as shown in the 

figure. Find the magnetic field due to the entire wire at point O. 

Solution:- 

Magnetic field due to linear portion. Any element d  of linear portions like PQ or ST will make angles 0 

or   with the position vector r . Therefore, the field at O due to the linear portion is. 

0

2

Id sin
B . 0

4 r

 
 


 

Magnetic field due to the semi-circular portion. Any element d  on this portion will be perpendicular 

to the position vector r , therefore, field due to one such element at the point will be. 

0 0

2 2

Id sin / 2 Id
dB .

4 r 4 r

 
 

 
 

The magnetic field due to the entire circular portion is given by. 

0 0 0

2 2

I I I
B dB d . r

4 r 4 r 4r

  
    

    
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 The total magnetic field at point 0IO
4r


  

Example: -A straight wire carrying a current of 12A is bent into a 

semicircular arc of radius 2.0 cm as shown in figure (a) What is 

the direction and magnitude of B  at the center of the arc? 

Would your answer change if the wire were bent into a semicircular arc of the same radius but in the 

opposite way as shown in the figure. 

Solution:- 

(a) The magnetic field at the center of the arc is 

0IB
4r


  Here 7 1

0I 12A,r 2.0cm 0.02m, 4 10 TmA        

7
44 10 12

B 1.9 10 T
4 0.02


 

   


 

According to the right-hand rule, the direction of the field is normally into the plane of the 

paper. 

(b) The magnetic field will be of the same magnitude, 

 4B 1.9 10 T   

The direction of the field is normally out of the plane of the paper. 

Example: -A long wire is bent as shown in the figure. What will be the magnitude 

and direction of the field at the center O of the circular portion, if a current I is 

passed through the wire? Assume that the various portions of the wire do not 

touch at point P. 

Solution:- 

The system consists of a straight conductor and a circular loop. Field due to straight conductor at point 

O is 

0
1

I
B

2 r





, up the plane of the paper 

Field due to circular loop at point O is 
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0
2

I
B

2r


 , up the plane of the paper 

 The total field at O is 

0
1 2

I 1
B B B 1

2r

  
    

 
 up the plane of the paper. 

Example:-Figure shows a current loop having two circular segments and 

joined by two radial lines. Find the magnetic field at the center O. 

Solution:- 

Since the point O lies on lines SP and QR, so the magnetic field at O due to these straight portions is 

zero. 

The magnetic field at O due to the circular segment PQ is 

0
1 2

I
B

4 a





 Here, = length of the arc PQ a   

0
1

I
B

4 a

 
 


, directed normally upward 

Similarly, the magnetic field at O due to the circular segment SR is. 

0
2

I
B .

4 b

 



, directed normally downward. 

The resultant field at O is 

0
1 2

I 1 1
B B B

4 a b

   
      

 or 
 0I b a

B
4 ab

  



 

Example:-The wire shown in figure carries a current of 10A. Determine the 

magnitude of the magnetic field at the center O. Give radius of the bent coil 

is 3 cm 

Solution:-As  
Arc

rad
Radius

   
3 3 r

or
2 r 2

 
    
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According to Biot-Savart law, the magnetic field at the center O is 

0 0 0

2 2

I I 3 r 3 I
B . . . .

4 r 4 r 2 4 2 r

   
  

  
 

7
3

2

4 10 3 22 10
. 1.57 10 T

4 2 7 3 10







   

 
 

Example:-In figure abcd is a circular coil of the non-insulated 

thin uniform conductor. Conductors pa and qc are very long 

straight parallel conductors tangential to the coil at the points 

a dn c. If a current of 5 A enters the coil from P to a, find the 

magnetic induction at O, the center of the coil. The diameter 

of the coil is 10cm. 

Solution:-Here, 2

abc adcI I 2.5A,r Oa,Ob Oc Od 5cm 5 10 m         

The magnetic induction at O due to the current in part oabc of the coil is equal and opposite to the 

magnetic induction due to the current in part adc. So magnetic induction at O due to the coil is zero. 

Magnetic induction at O due to the straight conductor pa 9a half infinite segment) is. 

7
50

1 2

I1 4 10 5
B 10 T

2 2 r 4 5 10






  
  

  
, Normally out of the plane of the paper, 

Similarly, magnetic induction at o due to straight conductor qc is 

50
2

I
B 10 T

4 r


 


 

Normally out of the plane of the paper. Total magnetic induction at o is 

5 5 5

1 2B B B 10 10 2 10 T         

Normally out of the plane of the paper. 
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Example:-The current –loop PQRSTP formed by two circular segments of radii 

R1 and R2 carries a current of I ampere. Find the magnetic field at the common 

center O. What will be the field if angle 090  ? 

Solution:- 

The magnetic field at O due to each of the straight parts PQ and RS is zero 

because 00  for each of them. 

The magnetic field at the center O due to circular segment QR of radius R2 is 

0
1 22

2

I
B .

4 R





 

Here, 2 = length of the circular segment 2QR R   

0
1

2

I
B .

4 R

 
 


, directed normally downward 

Similarly, the magnetic field at O due to the circular segment STP is 

 0
2

1

I 2
B

4 R





, directed normally downward. 

Hence the resultant field at O is 0
1 2

2 1

I 2
B B B

4 R R

   
    

  
, directed normally downward. 

If 090 / 2    , then 0 0

2 1 2 1

I3 1 3
B

4 2R 2R 8 R R

     
      

    
 

Ampere’s Circuital Law:- 

Introduction: 

 Just as gauss’s law is an alternative form of coulomb’s law in electrostatics, Similarly Ampere’s 

Circuital Law as an alternative form of Biot-Savart law in magnetism. 

  Ampere's circuital law in magnetism is analogous to gauss's law in electrostatics 
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 This law is also used to calculate the magnetic field due to any given current distribution 

Statement:- 

This law states that" The line integral of the resultant magnetic field along a closed plane curve is equal 

to μ0 time the total current crossing the area bounded by the closed curve provided the electric field 

inside the loop remains constant" Thus 

The law in integral form∮B · d l= μ0Iwhere μ0 is the permeability of free space and I is the net current 

enclosed by the loop 

Proof:  Consider a long straight conductor carrying current I perpendicular to the page in the upward 

direction as shown below in the figure 

 

 

Applying  Biot Savart law, the magnetic field at any point P which is at a distance R from the conductor 

is given by 

 

The direction of the magnetic field at point P is along the tangent to the circle of radius R with, The 

conductor at the center of the circle. For every point on the circle magnetic field has the same 

magnitude as given by  
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And the field is tangent to the circle at each point. The line integral of B around the circle is 

 

since ∫dl=2πR ie, the circumference of the circle so, 

 

This is the same result as stated by Ampere law 

 This ampere's law is true for any assembly of currents and for any closed curve though we have 

proved the result using a circular Amperean loop 

 If the wire lies outside the amperian loop, the line integral of the field of that wire will be zero  

 

but does not necessarily mean that B=0 everywhere along the path, but only that no current is 

linked by the path 

 while choosing the path for integration, we must keep in mind that the point at which field is to be 

determined must lie on the path and the path must have enough symmetry so that the integral can 

be evaluated. 

Important Points: 

 The circular sign in the equation means that scalar product B.dl is to be integrated around the 

closed-loop known as Amperian loop whose beginning and endpoint are same  

 The anticlockwise direction of integration as chosen in the figure  is an arbitrary one we can also 

use the clockwise direction of integration for our calculation depending on our convenience  

 To apply the ampere's law we divide the loop into infinitesimal segments dl and for each segment, 

we then calculate the scalar product of B and dl 

 B, in general, varies from point to point so we must use B at each location of dl 

 Amperion Loop is usually an imaginary loop or curve, which is constructed to permit the application 

of ampere's law to a specific situation.  
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Example: Magnetic Field Inside A Long Cylindrical Conductor 

A cylindrical conductor with radius R carries a current I. The 

current is uniformly distributed over the cross-sectional area of 

the conductor. Find the magnetic field as a function of the distance 

r from the conductor axis for points both inside (r<R) and outside 

(r>R) the conductor. 

From Ampere’s Law, we have: 

We will take the ampere loop to be a circle. Hence, for points inside the conductor, the ampere 

loop will be a circle with radius r, where r<R.  

∫B. dℓ = µ0I1 ………….(i) 

where I1 is the current passing (piercing) through the surface enclosed by the circular path of radius r. 

Note that I1 is the current carried by the cylindrical portion of the conductor having radius ‘r’ so that  

I1 = I(πr2/πR2) = Ir2/R2 

[The total current I passes through the total cross-section area πR2. So the current I1 passing 

through the cross-section area πr2 is I(πr2/πR2) = Ir2/R2]. 

Substituting for I1 in equation (i) and remembering that the direction of the magnetic field B is 

along the path of integration everywhere, we have  

2πrB = µ0Ir2/R2 

Therefore, B = μ0Ir/2πR2 

This shows that the magnetic field at the center of the 

conductor is zero (since r = 0) and it increases linearly with the 

increase in distance r within the conductor. The maximum value 

of the field is at the surface of the conductor (corresponding to r 

= R) and is equal to μ0I/2πR. 

http://1.bp.blogspot.com/-mCvJh-j7q7w/TfHymFr18SI/AAAAAAAABTA/VbRwqBObiJI/s1600/Mag+field2-appr10-6-11.jpg
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The direction of the field lines is clockwise as we have considered the current to flow into the plane of 

the figure, away from the reader. The magnitude of the magnetic flux density at a point such as P’ 

outside the conductor (at distance r > R)is given by 

2πrB = µ0I since the entire current I passes (pierces) through the surface enclosed by the circular path 

of radius r.  

This givesB = μ0I/2πr 

[This is the usual expression for the magnetic field due to a long straight (thin) current-carrying 

conductor]. 

Problems for Practice:- 

01. A wire placed along east-west direction carries a current of 10A from west to east direction. 

Determine the magnetic field due to a 1.8 cm piece of wire at a point 300 cm north-east from the 

place. 

02. A small current element Id , with ˆId 2k  mm and I = 2A is centred at the origin. Find the 

magnetic field dB  at the following points. 

(a) On the x-axis at x = 3 m 

(b) On the x-axis at x = -6m 

(c) On the z-axis at z = 3m 

03. An element ˆxi    is placed at the origin (as shown in the figure) and carries a current I = 2A. 

Find out the magnetic field at a point P on the y-axis at a distance of 1.0m due to the element 

x 1cm  . Give also the direction of the field produced. 
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Magnetic field due to a long straight current-carrying conductor:- 

As shown in figure consider a straight conductor XY carrying current I. We 

wish to find its magnetic field at the point P whose perpendicular distance 

from the wire is a i.e PQ = a.  

Consider a small current element d  of the conductor of O. Its distance 

from Q is  i.e OQ  . Let r  be the position vector of point P relative to 

the current element and   be the angle between d  and r .  

According to Biot-Savart law, the magnitude of the field dB  due to the 

current element d  will be. 

0

2

Id sin
dB

4 r

 



 

From right OQP,  

090   090    

 0sin sin 90 cos      

Also 
a

cos
r

   or 
a

r a sec
cos

  


 

As tan
a

    a tan    

On differentiating, we get 

2d asec d    

Hence 
 

0

2

2 2

I a sec d cos
dB

4 a sec

  
 

 
 or 0IdB cos d

4 a


  


 

According to the right-hand rule, the direction of the magnetic field at the P due to all such current 

elements will be in the same direction, namely normally into the plane of the paper. Hence the total 
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field B  at point P due to the entire conductor is obtained by integrating the above equation within the 

limits 1 2and  . 

2 2

1 1

0IB dB cos d
4 a

 

 


   

     2

1

0I sin
4






 


 

 0
2 1

I
sin sin sin

4


      

 or  0
1 2

I
B sin sin

4 a


   


 

This equation gives the magnetic field due to a finite wire in terms of the angles subtended at the 

observation point by the ends of the wire. 

Special Cases:- 

(a) If the conductor XY is infinitely long and the point P lies near the middle of the conductor, then 

1 2 / 2     

0 00IB sin90 sin90
4 a


    

 or 0IB
2 a





 

(b) If the conductor XY is infinitely long but the point P lies near the end Y (or X), then 

0 0

1 290 and 0     

0 00 0I I
B sin90 sin90

4 a 4 a

 
      

 

Clearly, the magnetic field due to an infinitely long straight current-carrying conductor at its one end is 

just half of that at any point near its middle, provided the two points are at the same perpendicular 

distance from the conductor. 

(c) If the conductor is of finite length L and the point P lies on its perpendicular bisector, then 

1 2      and 
 

2 2 22

L / 2 L
sin

4a La L / 2
  


 

 0IB sin sin
4 a


   


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0

2 2

I 2L
.

4 a 4a L



 
 or 0

2 2

IL
B

2 a 4a L




 
 

The direction of the magnetic field:- 

For an infinitely long conductor, 

0IB
2 a





 i.e 

1
B

a
  

Clearly, the magnitude of the magnetic field will be the same 

at all points located at the same distance from the 

conductor. Hence the magnetic lines of force of a straight.   

The current-carrying conductor is concentric circles 

with the wire at the center and in a plane perpendicular to the wire. ( A line of force is a curve, the 

tangent to which at any point gives the direction of the magnetic field at that point). If the current 

flows upwards, the lines of force have an anticlockwise sense and if the current flows downwards then 

the lines of force have a clockwise sense. 

Rules for finding the direction of the magnetic field due to straight current-carrying conductor:- 

Either of the following two rules can be used for this purpose: 

(a) Right-hand thumb rule:- If we hold the straight conductor in the grip of our 

right hand in such a way that the extended thumb points in the direction of 

the current, then the direction of the curl of the fingers will give the 

direction of the magnetic field.  

(b)  Maxwell’s cork screw rule:- if a right-handed screw be rotated along the wire so 

that it advances in the direction of the current, then the direction in which the 

thumb rotates gives the direction of the magnetic field. Variation of the magnetic 

field with distance from the straight current-carrying conductor. For a straight 

current-carrying conductor.  
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1
B

a
  

Thus, the graph plotted between the magnetic field B and the distance a from the straight conductor is 

a hyperbola, as shown in the figure.  

Example:- A current of 10A is flowing east to west in a long wire kept 

horizontally in the east-west direction. Find the magnetic field in a 

horizontal plane at a distance of 

(a) 10 cm north   

(b) 20 cm south from the wire and in the vertical plane at a distance of 

(c) 40 cm downward and  (d) 50 cm upward 

Solution:- 

(a) The magnetic field in a horizontal plane at 10 cm north of the wire is 

7
50

N

I 4 10 10
B 2 10 T

2 r 2 0.10


  

   
 

 

According to the right-hand thumb rule, the direction of the magnetic field will be downward in the 

vertical plane 

(b) The magnetic field at 20 cm south of the wire is 

 
7

5

S

4 10 10
B 1 10 T

2 0.20


 

  


 

The magnetic field will point upward in the vertical plane. 

(c) The magnetic field 40 cm just down the wire is 

 
7

6

D

4 10 10
B 5 10 T

2 0.40


 

  


 

The magnetic field will point south in a horizontal plane. 
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(d) The magnetic field 50 cm just above the wire is 

 
7

6

U

4 10 10
B 4 10 T

2 0.50


 

  


 

 The magnetic field will point north in a horizontal plane. 

Example:- A long straight wire carrying a current of 30 A is placed in an external uniform magnetic 

field of 44.0 10 T  parallel to the current. Find the magnitude of the resultant magnetic field at a 

point 2.0 cm away from the wire. 

Solution:- 

Here I = 30A, r = 2.0cm = 2.0 x 10-2m 

Field due to straight current-carrying wire is 

7
40

1 2

I 4 10 30
B 3.0 10 T

2 r 2 2.0 10






  
   

  
 

This field will act perpendicular to the external field 4

2B 4.0 10 T  . Hence the magnitude of the 

resultant field is 

   
2 2

2 2 4 4 4

1 2B B B 3 10 4.0 10 5 10 T         
 

Example:- Figure shows two current-carrying wires 1 and 2. 

Find the magnitude and directions of the magnetic field at 

points P, Q, and R. 

Solution:- 

(a) According to right-hand grip rule, the field B1 of wire 1 at point P will point normally outward while 

the field B2 of wire 2 will point normally inward, hence 

0 1 0 2
P 1 2

1 2

I I
B B B

2 r 2 r

 
   

 
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7
54 10 20 30

2 10 T
2 0.10 0.30


  

      
, pointing normally outward. 

(b) At point Q, both B1 and B2 will point normally inward, 

7

Q 1 2

4 10 20 30
B B B

2 0.10 0.10

  
       

 

410 T  , pointing normally inward. 

(c) At point r, B1points normally inward, and B2 points normally outward. 

7

R 2 1

4 10 30 20
B B B

2 0.10 0.30

  
       

 

54.3 10 T   pointing normally outward 

Example:- Two parallel wires P and Q placed at a separation of r = 6 cm carry electric current s 

1 2I 5Aand I 2A   in opposite directions as shown in the 

figure. Find the point on the line PQ where the resultant 

magnetic field is zero. 

Magnetic Field inside a straight Solenoid:- 

A solenoid means an insulated copper wire wound 

closely in the form of a helix. The word solenoid comes 

from a Greek word meaning channel and was first 

used by Ampere. By a long solenoid, we mean that the 

length of the solenoid is very large as compared to its 

diameter. The figure shows an enlarged view of the 

magnetic field due to a section of a solenoid. At 

various turns of the solenoid, current enters the plane of paper at points marked   and leaves the 

plane of paper at points marked . The magnetic field at points close to a single turn of the solenoid is 

in the form of concentric circles like that of a straight current-carrying wire. The resultant field of the 

solenoid is the vector sum of the field due to all the turns of the solenoid. Obviously, the fields due to 
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the neighboring turns add up along the axis of the solenoid but they cancel out in the perpendicular 

direction. At outside points such as Q, the fields of the points marked  tend to cancel out the fields of 

the points marked . Thus the field at interior midpoint P is uniform and strong. The field at the 

exterior midpoint Q is weak and is along the axis of the solenoid with no perpendicular component. 

The figure shows the field pattern of a solenoid of finite length. 

The polarity of any end of the solenoid can be determined by using the clock rule or Ampere’s right-

hand rule. 

Ampere’s right-hand rule:- Grasp the solenoid with the right 

hand so that the fingers point along the direction of the current, 

the extended thumb will then indicate the face of the solenoid 

that has north polarity. 

Calculation of magnetic field inside a long straight solenoid:- The magnetic field inside a closely 

wound long solenoid is uniform everywhere and zero 

outside it. The figure shows the sectional view of a long 

solenoid. At various turns of the solenoid, the current comes 

out of the plane of paper at points marked  and enters the 

plane of paper at points marked  . To determine the 

magnetic field B  at any inside point, consider a rectangular 

closed path abcd as the Amperean loop.  

According to Amper’s circuital law, 

B.d  

0    The total current through the loop abcd. 

Now, 
b d a

a c d
B.d B.d B.d B.d       

But 
c c

0

b b
B.d Bd cos90 0    
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a a
0

d d
B.d Bd cos90 0    

d

c
B.d 0  as B = 0 for points outside the solenoid. 

b

a
B.d B.d    

b b
0

a a
Bd cos0 B d B     

Where,  

 = length of the side ab of the rectangular loop abcd. 

Let the number of turns per unit length of the solenoid = n 

Then the number of turns in the length  of the solenoid = n  

Thus the current I of the solenoid threads the loop abced, n  times. 

Total current threading the loop abcd n I  

Here 0 0B n Ior B nI   

It can be easily shown that the magnetic field at the end of the 

solenoid is just one half of that at its middle. 

Thus 
end 0

1
B nI

2
   

The figure shows the variation of the magnetic field on the axis of a long straight solenoid with distance 

x from its center. 
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Magnetic field due to a toroidal solenoid:- 

 A solenoid bent into the form of a closed ring is called a toroidal solenoid. Alternatively, it is an anchor 

ring (torous) around which a large number of turns of a metallic wire are wound, as shown in the 

figure. We shall see that the magnetic field B  has a constant magnitude everywhere inside the toroid 

while it is zero in the open space interior (point P) and exterior (point Q) to the 

toroid. The figure shows a sectional view of the toroidal solenoid. The direction 

of the magnetic field inside is clockwise as per the right-hand thumb rule for 

circular loops. Three circular Amperean loops are shown by dashed lines. By 

symmetry, the magnetic field should be tangential to them and constant in 

magnitude for each of the loops. 

(a) For points in the open space interior to the toroid. 

 Let B1 be the magnitude of the magnetic field along the Amperean loop 1 

of radius r1. 

 Length of loop 1 of 1 12L r  

 As the loop encloses no current, so 0I   

 Applying Ampere’s circuital law, 

 1 1 0B L I   Or 1 1 02 0B r      Or 1 0B   

 Thus the magnetic field at any point P in the open space interior to the toroid is zero. 

(b) For points inside the toroid. 

 Let B be the magnitude of the magnetic field along the Amperean loop 2 of radius r. 

 Length of loop 2, 2 2L r  

If N is the total number of turns in the toroid and I the current in the toroid, then the total current 

enclosed by the loop 2 NI . Applying Amper’s circuital law, 

02B r NI      Or 0

2

NI
B

r




  
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If r be the average radius of the toroid and n the number of turns per unit length, then 

2N rn   0B nI   

(c)  For points in the open space exterior to the toroid. 

 Each turn of the toroid passes twice through the area enclosed by the Amperean loop 3. But for 

each turn, the current coming out of the plane of paper is canceled by the current going into the 

plane of the paper. Thus I = 0 and hence B3 = 0 

Example:- A solenoid coil of 300 turns/m is carrying a current of 5A. The length of the solenoid is 0.5 

m and has a radius of 1cm. Find the magnitude of the magnetic field inside the solenoid. 

Solution:-Here n = 300 turns/m I = 5A 

7 3

0 4 10 300 5 1.9 10B nI T            

Example:- a solenoid of length 0.5 m has a radius of 1cm and is made up of 500 turns. It carries a 

current of 5A. What is the magnitude of the magnetic field inside the solenoid? 

Solution:-Number of turns per unit length, 

500
1000

0.5

N
n

l m
   turns/ m 

Here 0.5 0.01l mand r m   

i.e l a . So we can use the formula for the magnetic field inside along solenoid. 

7 3

0 4 10 1000 5 6.28 10B nl T           

Example:- A 0.5 m long solenoid has 500 turns and has a flux density of 32.52 10 T  at the center. 

Find the current in the solenoid. Given 7 1

0 4 10 Hm     . 

Solution:-
500

1000
0.5

N
n

l m
   turns/m 

As 0B nl
3

7

0

2.52 10
2.0

4 10 1000

B
I A

n 






   

   
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Force on a moving charge in a magnetic field:- 

The electric charges moving in a magnetic field experience a force, while there is no such force on 

static charges. This fact was first recognized by Hendrik Antoon Lorentz, a great Dutch physicist, nearly 

a century ago. Suppose a positive charge q moves with velocity v  in magnetic field Band v  makes an 

angle with B , as shown in the figure. It is found from experiment that the charge q moving in the 

magnetic field B experiences a force F  such that. 

 The force is proportional to the magnitude of the 

magnetic field, i.e F B  

 The force is proportional to the charge q, i.e F q  

The force is proportional to the component of the velocity v 

in the perpendicular direction of the field B, i.e sinF v   

Combining the above factors, we get 

sinF Bqv   Or sinF kqvB   

The unit of the magnetic field is so defined that the proportionality constant k becomes unity in the 

above equation. Thus 

sinF qvB   

This force deflects the charged particle sideways and is called the magnetic Lorentz force. As the 

direction of F  is perpendicular to both v  and B , so we can express F  in terms of the vector product 

of v and B , so we can express F  in terms of the vector product of v and B  as  F q v B   

The figure shows the relationship among the directions of vectors ,F v and B . Vectors v and B  lie in 

the XY-plane. The direction of F  is perpendicular to this plane and 

points along + z-axis i.e F  acts in the direction of v B . 

Rules for finding the direction of the force on a charged particle 

moving perpendicular to a magnetic field. The direction of the 

magnetic Lorentz force F  can be determined by using either of 
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the following two rules. 

Fleming’s Left-hand rule:- Stretch the thumb and the first two fingers of the left hand mutually 

perpendicular to each other. If the forefinger points in the direction of the magnetic field central finger 

in the direction of the current, then the thumb gives the direction of the force on the charged particle.  

Right hand (palm) rule:- Open the right hand and place it so that 

the tips of the fingers point in the direction of the field B  and the 

thumb in the direction of the velocity v  of the positive charge, 

then the palm faces towards the force F , as shown in the figure.  

Definition of the magnetic field, we know that 
sin

F
B

qv 
  

If 01, 1, 90 ,sin90 1,oq v then B F      

Thus the magnetic field at a point may be defined as the force acting on a unit charge moving with a 

unit velocity at right angles to the direction of the field. 

SI unit of the magnetic field.  

Again, we use
sin

F
B

qv 
  

If 1 01 , 1 , 1 , 90F N q C v ms     , then  

SI unit of 
1

1

1 .1 .sin90o

N
B

C ms
  

 
1

1 .1

N

A m


1 11 1NA m tesla    

Thus the SI unit of the magnetic field is the tesla (T) 

 One tesla is that a magnetic field in which a charge of 1C moving with a velocity of 11ms  at right 

angles to the field experiences a force of one newton. 
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 A field of one tesla is a very strong magnetic field. Very often the magnetic fields are expressed in 

terms of a smaller unit, called the gauss (G) 

41 10gauss tesla  

Some typical magnetic fields 

8

2

4

12

10

arg 1

10

' 10

inte 10

Surfaceof a neutron star T

L e field in thelaboratory T

Field near abar magnet T

Field ontheearth s surface T

Field in rstellar space T







 

Dimensions of the magnetic field, clearly, 

 
 

   

2

1sin . .1

F MLT
B

q v AT LT




   

Here A represents current. 

What is the Lorentz force? Write an expression for it. 

 The total force experienced by a charged particle moving in a region where both electric and 

magnetic fields are present is called Lorentz force. 

A charge q in an electric field E  experiences the electric force, 

eF qE
 

This force acts in the direction of the field E  and is independent of the velocity of a charge. 

The magnetic force experienced by the charge q moving with velocity v in the magnetic field B  is 

given by.  mF q v B   

This force acts perpendicular to the plane of v and B and depends on the velocity v  of the charge. The 

total force, or the Lorentz force, experienced by the charge q due to both electric and magnetic field is 

given by. 
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e m
F = F + F  Or  F = q E+ v×B  

Example:- A proton enters a magnetic field of flux density 2.5 T with a velocity of 7 11.5 10 ms  at an 

angle of 30o with the field. Find the force on the proton. 

Solution:- 

Here 19 7 1 01.6 10 , 1.5 10 , 2.5 , 30q e C v ms B T          

Force, sinF qvB   

19 71.6 10 1.5 10 2.5 sin30o       123 10 N   

Example:- Copper has 288.0 10  electrons per cubic meter. A copper wire of length 1m and cross-

sectional area 6 28.0 10 m  carrying a current and lying at the right angle to a magnetic field of 

strength 35 10 T  experiences a force of 28.0 10 N . Calculate the drift velocity of free electrons in 

the wire. 

Solution:- 

28 38 10 , 1n m l m    

6 2 198 10 , 1.6 10A m e C      

The total charge contained in the wire, 

q = volume of wire x ne = alne 

6 28 198 10 1 8 10 1.6 10 C         

3102.4 10 C   

If dv  is the drift speed of electrons, then 

0sin90d dF qv B qv B   
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2
1

3 3

8.0 10

102.4 10 5 10
d

F
v ms

qB







 

  
 

4 11.56 10 ms  
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Work done by a magnetic force on a charged particle is zero:- 

 The magnetic force  F q v B   always acts perpendicular to the velocity v or the direction of 

motion of charge q. Therefore 

 . . 0F v q v B v    

According to Newton’s second law. 

dv
F ma m

dt
   

. 0
dv

m v
dt

   

Or . . 0
2

m dv dv
v v

dt dt

 
  

 
 

Or  . 0
2

m d
v v

dt
  

Or 21
0

2

d
mv

dt

 
 

 
 Or 21

0
2

d
mv

dt

 
 

 
 

Or 0
dK

dt
    

K = constant 

Thus a magnetic force does not change the kinetic energy of the charged particle. This indicates that 

the speed of the particle does not charge. According to the work-energy theorem, the charge in kinetic 

energy is equal to the work done on the particle by the net force. Hence the work done on the charged 

particle by the magnetic force is zero. 

The motion of a charged particle in a uniform magnetic field:- 

Discuss the motion of a charged particle in a uniform magnetic field with initial velocity (a) parallel to 

the field (b) perpendicular to the magnetic field and (c) at an arbitrary angle with the field direction. 
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When a charged particle having charge q and velocity v  enters a magnetic field B , it experiences a 

force. 

 F q v B   

The direction of this force is perpendicular to both v and B . The magnitude of this force is 

sinF qvB   

The following three cases are possible. 

When the initial velocity is parallel to the magnetic field 

Here 0 , sin0 0o oSo F qvB     

Thus the parallel magnetic field does not exert any force on the moving charged particle. The charged 

particle will continue to move along the line of force. 

When the initial velocity is perpendicular to the magnetic field 

 Here 90 , sin90o oSo F qvB qvB a      maximum force. 

As the magnetic force acts on a particle perpendicular to its 

velocity, it does not do any work on the particle. It does not change 

the kinetic energy or speed of the particle.  The figure shows a 

magnetic field B  directed normally into the plane of the paper, as 

shown by small crosses. A charge +q is projected with a speed v in the plane of the paper. The velocity 

is perpendicular to the magnetic field. A force F qvB  acts on the particle perpendicular to both 

v and B . This force continuously deflects the particle sideways without changing its speed and the 

particle will move along a circle perpendicular to the field.  

Clearly, the time period is independent of v and r. If the particle moves faster, the radius is larger, it has 

to move along a large circle so that the time taken is the same. 

The frequency of revolution is 
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1

2
c

qB
f

T m
   

This frequency is called cyclotron frequency 

When the initial velocity makes an arbitrary angle with the field direction 

A uniform magnetic field B  is set up along the +ve X-axis. 

A particle of charge q and mass m enters the field B  with 

velocity v  inclined at an angle   with the direction of the 

field B , as shown in the figure. 

The velocity v  can be resolved into two rectangular 

components 

The component 
||v  along the direction of the field i.e along the X-axis. Clearly 

|| cosv v  . The parallel 

component remains unaffected by the magnetic field and so the charged particle continues to move 

along the field with a speed of cosv  .  

The component v  perpendicular to the direction of the field i.e in the YZ-plane.  

Clearly sinv v   . Due to this component of velocity, the charged particle experiences a force 

F qv B that acts perpendicular to both v and B .  

sinmv mv
r

qB qB

   

The period of revolution is 
2 2 sin 2

.
sin

r mv m
T

v v qB qB

   



    

Thus a charged particle moving in a uniform magnetic field has two concurrent motions a linear motion 

in the direction of B  (along X-axis) and a circular motion in a plane perpendicular to B  (in YZ plane). 

Hence the resultant path of the charged particle will be a helix, with its axis along the direction of B . 

The linear distance traveled by the charged particle in the direction of the magnetic field during its 

period of revolution is called the pitch of the helical path. 
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Pitch = ||

2π 2πmvcosθ
v ×T = vcosθ× =

qB qB
 

Velocity selector:- As shown in the figure the 

electric field E  acts in the downward direction 

and deflects the electrons in the upward 

direction. The magnetic field B  acts normally into 

the plane of the paper and deflects the electrons in 

the downward direction.  

Only those electrons will pass unelected through 

the slit S2 on which the electric and magnetic forces are equal and opposite. The velocity v of the 

unelected electrons is given by.
E

eE evB or v
B

   

Such an arrangement can be used to select charged particles of a particular velocity out of a beam in 

which the particles are moving with different speeds. This arrangement is called the velocity selector or 

velocity filter. This method was used by J.J. Thomson to determine the charge to mass ratio (e/m) of an 

electron. 

Example:- An electron after being accelerated through a potential difference of 104 V enters a 

uniform magnetic field of 0.04 T perpendicular to its direction of motion. Calculate the radius of the 

curvature of its trajectory. 

Solution:-Here, 4 19 3110 , 0.04 , 1.6 10 , 9.1 10V V B T e C m kg        

An electron accelerated through a p.d. V acquires a velocity v given by 

21 2

2

ev
mv eV or V

m
   

As the electron describes a circular path a radius of r in the perpendicular magnetic field B, therefore, 

2mv
evB

r
  
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Or 
2 2mv m eV meV

r
eB eB m eB

    
31 19 4

19

2 9.1 10 1.6 10 10

1.6 10 0.04

 



    


 
 

23

19

5.4 10

1.6 10 0.04








 
 38.43 10 8.43m mm    

Example:- If a particle of charge q is moving with velocity v along the z-axis and the magnetic field B 

is acting along the x-axis, use the expression  F q v B   to find the direction of the force F acting 

on it. A beam of proton passes unelected with a horizontal velocity v, through a region of electric and 

magnetic fields, mutually perpendicular to each other and normal to the direction of the beam. If the 

magnitudes of the electric and magnetic fields are 100 kV/m and 50 mT respectively, calculate (a) 

velocity v of the beam. (b) the force with which it strikes a target on a screen if the proton beam 

cutting is equal to 0.80 mA. 

Solution:- 

   ˆˆF q v B q vj Bk      

ˆˆ ˆqvBj k qvBi   

Thus the force F acts on the charge q along the +ve x-direction. 

(a) For undeflected proton beam, qvB qE  

 
1 3 1

3

100 100 10

50 50 10

E kVm Vm
v

B mT T

 




  


   

 6 12 10 ms   

(b) The current carried by proton beam, 40.8 8 10I mA A    

 Number of protons striking the screen per second,  

 
4

15 1

19

1 8 10
5 10

1.6 10
n s

e







   


 

 271.675 10pm kg   
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 The force with which a proton beam strikes a target on the screen, 

 
p

dp
F m nv

dt
     

 27 15 61.675 10 5 10 2 10 N       

 51.675 10 N   

Cyclotron:- 

It is a device used to accelerate charged particles like protons, deuterons,  particles, etc. to very high 

energies. It was invented by E.O Lawrence and M.S. Livingston in 1934 at Berkeley. California 

University. 

Principle:- A charged particle can be accelerated to very high energies by making it pass through a 

moderate electric field a number of times. This can be done with the help of a perpendicular magnetic 

field which throws the charged particle into a circular motion, the frequency of which does not depend 

on the speed of the particle and the radius of the circular orbit. 

Construction:- As shown in figure a cyclotron consists of the following main parts 

 It consists of two small, hollow, metallic half-cylinders D1 and 

D2 called dees as they are in the shape of D. 

 They are mounted inside a vacuum chamber between the 

poles of a powerful electromagnet. 

 The dees are connected to the source of the high-frequency 

alternating voltage of a few hundred kilovolts. 

 The beam of charged particles to the accelerated is injected 

into the dees near their center, in a plane perpendicular to 

the magnetic field. 

 The charged particles are pulled out of the dees by a 

deflecting plate (which is negatively charged) through a 

window W. 
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 The whole device is in a high vacuum (pressure 6~10 mm of Hg) so that the air molecules may not 

collide with the charged particles. 

Theory:- Let a particle of charge q and mass m enter a 

region of the magnetic field B  with a velocity v , normal 

to the field B . The particle follows a circular path, the 

necessary centripetal force being provided by the 

magnetic field. Therefore, 

Magnetic force on charge q = Centripetal force on 

charge q 

Or 
2

0sin90
mv mv

qv B or r
r qB

   

The period of revolution of the charged particle is given by. 

2 2 2
.

r mv m
T

v v qB qB

  
    

Hence the frequency of revolution of the particle will be 
1

2
c

qB
f

T m
  . Clearly, this frequency is 

independent of both the velocity of the particle and the radius of the orbit and is called cyclotron 

frequency or magnetic resonance frequency. This is the key fact which is made use of in the operation 

of a cyclotron. 

Working:- 

Suppose a positive ion, say a proton, enters the gap between the two dees and finds dee D1 to be 

negative. It gets accelerated towards dee D1. As it enters the dee D1, it does not experience any electric 

field due to the shielding effect of the metallic dee. The perpendicular magnetic field throws it into a 

circular path. At the instant the proton comes out of dee D1, it finds dee D1 positive and dee D2 

negative. It now gets accelerated towards dee D2. It moves faster through D2 describing a larger 

semicircle than before. Thus if the frequency of the applied voltage is kept exactly the same as the 

frequency of revolution of the proton, then every time the proton reaches the gap between the two 
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dees, the electric field is reversed and the proton receives a push and finally, it acquires very high 

energy. This is called cyclotron’s resonance condition. The proton follows a spiral path. The accelerated 

proton is ejected through a window by a deflecting voltage and hits the target. 

Maximum K.E of the accelerated ions:- 

The ions will attain maximum velocity near the periphery of the dees. If 0v  is the maximum velocity 

acquired by the ions and 0r  is the radius of the dees, then 

2

0
0

0

mv
qv B

r
  or 0

0

qBr
v

m
 . The maximum kinetic energy of the ions will be 

2

2 0
0 0

1 1

2 2

qBr
K mv m

m

 
   

 
 

Or 
2 2 2

0
0

2

q B r
K

m
  

Limitations of cyclotron:- 

 According to Einstein’s special theory of relativity, the mass of a particle increases with the increase 

in its velocity as. 0

2 21 /

m
m

v c



, where m0 is the rest mass of the particle. At high velocities, the 

cyclotron frequency  / 2cf qB m  will decrease due to the increase in mass. This will throw the 

particles out of resonance with the oscillating field. That is, as the ions reach the gap between the 

dees, the polarity of the dees is not reversed at that instant. Consequently, the ions are not 

accelerated further. The above drawback is overcome either by increasing the magnetic field as in a 

synchrotron or by decreasing the frequency of the alternating electric field as in a synchro-

cyclotron. 

 Electrons cannot be accelerated in a cyclotron. A large increase in their energy increases their 

velocity to a very large extent. This throws the electrons out of step with the oscillating field. 

 Neutrons, being electrically neutral, cannot be accelerated in a cyclotron. 

Uses of cyclotron:- 

 The high energy particles produced in a cyclotron are used to bombard nuclei and study the 

resulting nuclear reactions and hence investigate nuclear structure. 

 The high energy particles are used to produce other high energy particles, such as neutrons, by 

collisions. These fast neutrons are used in atomic reactions. 

 It is used to implant ions into solids and modifies their properties or even synthesis new materials. 

 It is used to produce radioactive isotopes that are used in hospitals for diagnosis and treatment. 
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Example:-In a cyclotron, a magnetic induction of 1.4 T is used to accelerate protons. How rapidly 

should the electric field between the dees be reversed? The mass and charge of the proton are 

27 191.67 10 1.6 10kg and C     respectively. 

Solution:- 

271.4 , 1.67 10B T m kg     

191.6 10e C   

The time required by a charged particle to complete a semicircle in a dee is. 

27
8

19

3.14 1.67 10
2.34 10

1.6 10 1.4

m
t s

eB

 




 
   

 
 .  

Thus the direction of the electric field should reverse after every 82.34 10 s  .  

The frequency of the applied electric field should be. 

7

8

1 1
2.14 10

2 2 2.34 10
cf Hz

t 
   

 
 

Example:- If the maximum value of accelerating potential provided by a radio frequency oscillator be 

20 kV, find the number of revolutions made by a proton in a cyclotron to achieve one-fifth of the 

speed of light. Mass of a proton 271.67 10 kg  . 

Solution:- 

In a cyclotron, a proton gains energy eV, when it crosses a region of potential difference V. In one 

revolution, the particle crosses the gap twice. So the energy gained in each revolution = 2 eV. Suppose 

the particle makes n revolutions before emerging from the dees. The gain in its kinetic energy will be. 

2
21

2
2 4

mv
mv neV or n

eV
    

Given 
8

8 13 10
0.6 10

5 5

c
v ms


     
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271.67 10m kg    

 
2

27 8

19 3

1.67 10 0.6 10
470

4 1.6 10 20 10
n





  
  

   
 revolutions. 

Force on a current-carrying conductor in a magnetic field:- 

When a conductor carrying a current is placed in an 

external magnetic field, it experiences a mechanical force. To 

demonstrate this force, take a small aluminum rod AB. 

Suspend it horizontally by means of connecting wires from a 

stand, as shown in the figure.  

Place a strong horseshoe magnet in such a way that the rod is 

between the two poles with the field directed upwards. Now, 

it current is passed through the rod from A to B, the rod gets deflected to the right. If we reverse the 

direction of the current or interchange the poles of the magnet, the deflection of the rod is also 

reversed. The direction of force is perpendicular to both the current and the magnetic field and is given 

by Fleming’s left-hand rule. 

Cause of the force on a current-carrying conductor in a magnetic field. Current is an assembly of 

moving charges and a magnetic field exerts a force on a moving charge. That is why a current-carrying 

conductor, when placed in the magnetic field experiences a sideways force as the force experienced by 

the moving charges (free electrons), is transmitted to the conductor as a whole. 

 As shown in figure consider a conductor PQ of length 

l, area of cress section A, carrying current l along +ve 

Y-direction. The field B  acts along +ve Z-direction. The 

electrons drift towards left with velocity dv . Each 

electron experiences a magnetic Lorentz force along 

+ve X-axis, which is given by 

 df e v B    
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If n is the number of free electrons per unit volume, then the total number of electrons in the 

conductor is 

N n volume nAl    

The total force on the conductor is 

 dF Nf nAl e v B    
 

 

denA l v B      

If I l  represents a current element vector in the direction of the current, then the vector l  and dv  will 

have opposite directions and we can take. 

d dlv v l    dF enAv l B    

But denAv  current, I Hence  F I l B   

The magnitude of force:- The magnitude of the force on the current-carrying conductor is given by 

sinF IlB  , 

where   is the angle between the direction of the magnetic field and the direction of flow of current? 

Special cases 

(a) If 0 00 180or  , then  0 0F IlB  . Thus a current-carrying conductor placed parallel to the 

direction of the magnetic field does not experience any force. 

(b) If 090  , then 0sin90F IlB IlB  , or maxF IlB . Thus a current-carrying conductor placed 

perpendicular to the direction of the magnetic field experiences a maximum force. 

The direction of force:- The direction of the force on a current-carrying conductor placed in a 

perpendicular magnetic field is given by Fleming’s left-hand rule. Stretch the thumb and the first two 

fingers of the left hand in mutually perpendicular directions. If the forefinger points in the direction of 

the magnetic field, the central finger in the direction of the current, then the thumb gives the direction 
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of the force on the conductor. If figure the field B  is along +Z-direction, the current I along +Y-

direction and so the force F  acts along + X-direction. 

Example:-  

A straight wire of mass 200 g and length 1.5 cm carries a current of 2A. It is suspended in mid-air by a 

uniform magnetic field (B). What is the magnitude of the magnetic field? 

Solution:- 

2 , 1.5 , 0.2  I A m m kg   

I B mg   

0.2 9.8
6.53

2 1.5


   



mg
B T

I
 

Example:-  

What is the magnitude of magnetic force per unit length on a wire carrying a current of 8A and 

making an angle of 30o with the direction of a uniform magnetic force of 0.15 T 

Solution:- 

Given  8 , 30 , 0.15  oI A B   

We know sinF I B   

0sin 8 0.15 sin30 0.60 /     
Force F

IB N m
Length

  

Numerical:- 

A 3 cm wire carrying a current of 10A is placed inside a solenoid perpendicular to its coils. The 

magnetic field inside the solenoid is 0.27 T. What is the magnetic force on the wire. 

Numerical:-  
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A conductor of length 50 cm carrying a current of 2.5 A experiences a maximum force of 0.15 N when 

kept in a uniform magnetic field. Find the magnitude and direction of the magnetic field. 

Example:- A wire of length l  carries a current I along the X-axis. A magnetic field  0
ˆˆ ˆB B i j k    

tesla exists in space. Find the magnitude of the magnetic force on the wire. 

Solution:- 

As the wire carries current I along the X-axis, so ˆl li  

Also,  0
ˆˆ ˆB B i j k    tesla 

Magnetic force on the wire is 

   0
ˆˆ ˆ ˆF I l B I l i B i j k      

 
   

 0
ˆˆ ˆ ˆB I l i i j k    

 
 

0
ˆˆ ˆ ˆ ˆB I l i i j i k     

 
    

   0 0
ˆ ˆˆ ˆ0B I l k j k j B I l      

The magnitude of the magnetic force is   

 
22

0 01 1 2F B I l B I l     newton. 

Example:- The horizontal component of the earth’s magnetic field at a certain place is 53.0 10 T  

and the direction of the field is from the geographic south to the geographic north. A very long 

straight conductor is carrying a steady current of 1A. What is the force per unit length on it when it is 

placed on a horizontal table and the direction of the current is (a) east to west, (b) south to north? 

Solution:- 

The force on a conductor of length l  placed in a magnetic field B, and carrying current I, is 
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sinF IlB   

The force per unit length will be sin
F

f IB
l

  

Where   is the angle that the conductor makes with the direction of B  

(a) When the current flows east to west, 090   

 0 5sin90 1 3.0 10 1f IB         

 5 13.0 10 Nm    

 According to Fleming’s left-hand rule, this force acts vertically downwards. 

(b) When the current flows from south to north, 00    

 0sin0 0F Il    

 Thus the force per unit length of the conductor is zero. 

The force between two parallel current-carrying conductors:-. 

It was first observed by Ampere in 1820 that two parallel straight conductors carrying currents in the 

same direction attract each other and those carrying currents in the opposite directions repel each 

other. 

Experiment – 1 

As shown in the figure the upper ends of two wires are connected to the –ve terminal of a battery and 

their lower ends are connected to the +ve terminal of the battery through a mercury bath. When the 

circuit is completed, the current flow in the two wires in the same direction. 

The two wires are found to be closer to each other, indicating a force of 

attraction between them.  

Experiment – 2 

 As shown in figure two wires are connected to a battery through a 
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mercury bath in such a way those current flows in them in succession. When the circuit is closed, the 

currents in the two wires flow in opposite directions. The two wires move away from each other, 

indicating a force of repulsion between them.  

 As shown in figure consider two long parallel wires AB and CD carrying currents I1 and I2. 

Let r be the separation between them. The magnetic field produced by current I1 at any point on wire 

CD is. 

0 1
1

2

I
B

r




  

This field acts perpendicular to the wire CD and points into the plane of the paper. It exerts a force on 

current-carrying wire CD. The force acting on length l of the wire CD will be. 

0 0 1 0 1 2
2 2 1 2sin90 . .

2 2

I I I
F I lB I l l

r r

 

 
    

Force per unit length, 0 1 22

2

I IF
f

l r




   

According to Fleming’s left-hand rule, this force acts at right angles to CD, towards AB in the plane of 

the paper. Similarly, an equal force is exerted on the wire AB by the field of wire CD. Thus when the 

currents in the two wires are in the same direction, the forces between them are attractive. It can be 

easily seen that 

1 2F F   

As shown in the figure when the currents in the two parallel wires flow in opposite directions (anti-

parallel), the forces between the two wires are repulsive. Thus, 

Parallel currents attract and anti-parallel currents repel. 

Definition of ampere. 

When 1 2 1 1I I Aand r m      
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We get 7 10 2 10
2

f Nm




     

One ampere is that value of steady current, which on flowing in each of the two parallel infinitely long 

conductors of negligible cross-section placed in vacuum at a distance of 1m from each other, produces 

between them a force of 72 10  newton per meter of their length. 

Definition of coulomb in terms of ampere. 

If a steady current of 1 ampere is set up in a conductor, then the quantity of charge that flows through 

its cross-section in 1 second is called one coulomb. 

1 1C As  

Example:- A current 5.0 A flows through each of two parallel long wires. The wires are 2.5 cm apart. 

Calculate the force acting per unit length of each wire. Use the standard value of the constant 

required. What will be the nature of the force, if both currents flow in the same direction? 

Solution:-Here 1 2 5I I A    

2 7 1

02.5 2.5 10 , 4 10r cm m TmA         

Force acting per unit length of each wire, 

7

0 1 2

2

4 10 5 5

2 2 2.5 10

I I
f

r

 

 





  
 

 
 4 12 10 Nm   .  

As the currents in both the wires flow in the same direction, the force will be attractive. 

Example:- A current balance (or ampere balance) is a device for measuring currents. The current to 

be measured is arranged to go through two long parallel wires of equal length in opposite directions 

one of which is linked to the pivot of the balance. The resulting repulsive force on the wire is 

balanced by putting a suitable mass in the scale pan hanging on the other side of the pivot. In one 

measurement, the mass in the scale pan is 30.0 g, the length of the wires is 50.0 cm each, and the 

separation between them is 10.0 mm. What is the value of the current being measured? Take 
29.80g ms  and assume that the arms of the balance are equal. 

Solution:-M = 30.0g = 0.03kg, 250 0.50 , 10.0 0.01 , 9.8l cm m r mm m g ms      

Force per unit length between two parallel conductors,  
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0 1 2.
2

I I
f

r




   Force on a conductor of length l , 

0 1 2.
2

I I l
F

r




 When the pan is balanced, 

Weight in scale pan = Balancing force 

i.e 0 . .
2

I I
mg l

r






  

Or 2

7

0

2 2 0.03 9.8 0.01
29400

4 10 0.05

mgr
I

l

 

  

  
  

 
 29400 171.46I A    

The problem for Practice:- 

 A long horizontal rigidly supported wire carries a current of 100A. Directly above it and parallel to it 

is a fine wire that carries a current of 200 A and weighs 10.05Nm . How far above the wire should 

the second wire be kept to support it by magnetic repulsion? 

 A wire AB is carrying a steady current of 12A and is lying on the table. Another wire CD carrying 5A 

is held directly above AB at a height of 1mm. Find the mass per unit length of the wire CD so that it 

remains suspended at its position when left free. Give the direction of the current flowing in CD 

with respect to the in AB. 

 A current of 1A flows in a wire of length 0.1 m in a magnetic field of 0.5 T. Calculate the force acting 

on the wire when the wire makes an angle of (a) 900 (b) 00, with respect to the magnetic field. 

 A current of 5.0 A is flowing upward in a long vertical wire placed in a uniform horizontal northward 

magnetic field of 0.02 J. How much force and in what direction will the riled exert on 0.06 m length 

of the wire? 

 What is the magnitude of the force on a wire of length 0.04 m placed inside a solenoid near its 

center, making an angle of 300 with its axis? The wire carries a current of 12A and the magnetic 

field due to the solenoid is of magnitude 0.25 T. 

 A long straight conductor P carrying a current of 2A is placed parallel to a short conductor Q of 

length 0.05 m carrying a current of 3A. The two conductors are 0.10 m apart. Calculate (a) the 

magnetic field due to P at Q (b) the approximate force on Q. 
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Torque on a rectangular current loop in a uniform magnetic field:- 

Let us consider a rectangular loop PQRS in a uniform magnetic field lying in the plane of the paper 

(XOY). The current flowing (acw) through the loop is I and l , b are its length and breadth respectively. 

Since the arms PQ and RS are parallel to B , the 

force acting on each arm is zero. 

Force acting on arm PS, i.e, F IlB  

Force acting on arm QR i.e,  F IlB  

The directions of these forces, according to 

Fleming’s left-hand rule, are perpendicular to the plane of the paper, one pointing outwards  and 

other inwards   as shown in the figure. 

Since these forces (F.F) are parallel to each other and act in opposite directions at different points, they 

form a couple; b is the arm of this couple. 

Moment of the couple (i.e torque)  

 F b IlB b     

IAB   (as lb A  the area of the loop) 

The torque   rotates the loop scq and as such is represented as shown. 

A convenient vector notation for the above equation is. 

I A B   ……………………. (1) 

Here, A  is the area vector of the loop whose direction is determined by the right-hand rule (by 

wrapping the fingers of the right hand in the direction of the current, the thumb points in the direction 

of A ).   lies in the plane of the paper and is acting upwards. 

Current loop as a magnetic dipole:- 

Comparing equation (1) with the equation for the torque acting on a magnetic dipole of the magnetic 

moment m  in a uniform magnetic field B  
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τ =m×B = MBsinθ  

We find that m I A  ………………….. (2) 

 Thus, a current-carrying loop behaves as a bar magnet with its one face as the south pole and the 

other face as the north pole. In the figure, the front face of the loop is the north pole and the back face 

is the south pole. If we look at the front face of the loop, the current is in the anticlockwise (acw) 

direction. As such, the front face is the north-seeking pole. The SI unit of magnetic moment is Am2. 

Case – I (If 0 o , B  is  to plane of loop or 180 o   

sin0 0  oMB  

Case – II (If 90 , o B  is parallel to the plane of the loop 

sin90  oMB MB  

Note:- Torque    removing constant even when the planar current loop is of arbitrary shape. 

Question:-  

A rectangular coil of sides 8 cm and 6 cm having 2000 turns and carrying a current of 200 MA is placed 

in a magnetic field of 0.2 T directed along X-axis 

(a) What is the maximum torque the coil can experience? In which orientation does it experience the 

maximum torque? 

(b) For which orientation of the coil is the torque zero? When is this equilibrium stable and when is it 

unstable? 

Solution:- 

(a) N = 2000, 3 4 2200 10 , 0.2 , 48 10     I A B T A m  

 sin NIAB   If 090  

   is maximum 

 4 32000 48 10 200 10 0.2 0.384         NIAB Nm  
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 Here plane of coil coincides with XZ or XY plane 

(b)   is minimum when 0 180 o oor . This happens, when the plane of the coil coincides with YZ 

plane. 

 (i) The coil is said to be in stable equilibrium when A  is parallel to B and  

 (ii) Unstable equilibrium with A  is anti-parallel to B 

Question:-  

A uniform magnetic field 3000 G is established had along +Z direction. A rectangular loop of sides 10 

cm and 5 cm carries Q current of 12 A. What is the torque on the loop in the different cases shown in 

the figure? What is the force on each side? Which case corresponds to a stable equilibrium? 

 

Moving Coil Galvanometer:- 

A galvanometer is a device to detect current in a circuit. The commonly used moving coil galvanometer 

is named so because it uses a current-carrying coil that rotates (or moves) in a magnetic field due to 

the torque acting on it. 

In a D’ Arsonval galvanometer, the coil is suspended on a phosphor-bronze wire. It is highly sensitive 

and requires careful handling. In the Weston galvanometer, the coil is pivoted between two jeweled 

bearings. It is rugged and portable though less sensitive, and is generally used in laboratories. The basic 

principle of both types of galvanometers is the same. 
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Principle:- A current-carrying coil placed in a magnetic field 

experiences a current dependent torque, which tends to 

rotate the coil and produces angular deflection. 

Construction:- As shown in the figure, a Weston (pivoted 

type) galvanometer consists of a rectangular coil of fine 

insulated copper wire wound on a light non-magnetic 

metallic (aluminum) frame. The two ends of the axle of this 

frame are pivoted between two jeweled bearings. The 

motion of the coil is controlled by a pair of hairsprings of 

phosphor bronze. The inner ends of the springs are soldered 

to the two ends of the coil and the counter ends are 

connected to the binding screws. The springs provide the 

restoring torque and serve as current leads. A light aluminum pointer attached to the coil measures its 

deflection on a suitable scale. 

The coil is symmetrically placed between the cylindrical pole pieces of a strong permanent horseshoe 

magnet.  

A cylindrical soft iron core is mounted symmetrically 

between the concave poles of the horseshoe magnet. 

This makes the lines of force pointing along the radii of 

a circle. Such a field is called a radial field. The plane of 

a coil rotating in such a field remains parallel to the 

field in all positions, as shown in figure (a) also, the soft 

iron cylinder, due to its high permeability, intensifies 

the magnetic field and hence increases the sensitivity of the galvanometer. 

Theory and working:- In figure (a) have  
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I = current flowing through the coil PQRS 

a, b = sides of the rectangular coil PQRS 

A = ab = area of the coil 

N = number of turns in the coil 

Since the field is radial, the plane of the 

coil always remains parallel to the field B . 

The magnetic forces on sides PQ and SR 

are equal, opposite, and collinear, so their 

resultant is zero. According to Fleming’s left rule, the side PS experiences a normal inward force equal 

to NIbB while the side QR experiences an equal normal outward force. The two forces on sides PS and 

QR are equal and opposite. They form a couple and exert a torque given by. 

 = Force X perpendicular distance 

 0sin90NIbB a NIB ab NIBA     

Here 
090  , because the normal to the plane of the coil remains perpendicular to the field B in all 

positions. 

The torque   deflects the coil through an angle  . A restoring torque is set up in the coil due to the 

elasticity of the springs such that 

restoring restoringor k      

Where k is the torsion constant of the springs i.e torque required to produce unit angular twist. In 

equilibrium position,  

Restoring torque = Deflecting torque k NIBA   

Or .
NBA

I
k

   

Or  I   
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Thus, the deflection produced in the galvanometer coil is proportional to the current flowing through 

it. Consequently, the instrument can be provided with a scale with equal divisions along a circular scale 

to indicate equal steps in the current. Such a scale is called a linear scale. 

Also, 
k

I = .α = Gα
NBA

 

The factor G = k / NBA  is constant for a galvanometer and is called the galvanometer constant or 

current reduction factor of the galvanometer. 

The figure of merit of the galvanometer. It is defined as the current which produces a deflecting of 

one scale division in the galvanometer and is given by. 

I k
G = =

α NBA
 

The sensitivity of a Galvanometer:- 

 A galvanometer is said to be sensitive if it shows large scale deflection even when a small current is 

passed through it or a small voltage is applied across it. 

Current sensitivity:- 

It is defined as the deflection produced in the galvanometer when a unit current flows through it. 

Current sensitivity, 
S

α NBA
I = =

I k
 

Voltage sensitivity:- 

It is defined as the deflection produced in the galvanometer when a unit potential difference is applied 

across its ends. 

Voltage sensitivity, 
S

α α NBA
V = = =

V IR kR
 

Clearly, 
current sensitivity

voltagesensitivity =
R

 

Factors on which the sensitivity of a moving coil galvanometer depends:- 
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(a) Number of turns N in its coil  (b) Magnetic field B 

(c) Area A of the coil    (d) Torsion constant k of the spring and suspension wire 

Factors by which the sensitivity of a moving coil galvanometer can be increased:- 

 By increasing the number of turns N of the coil. But the value of N cannot be increased beyond a 

certain limit because that will make the galvanometer bulky and increase its resistance R. 

  By increasing the magnetic field B. This can be done by using a strong horseshoe magnet and 

placing a soft iron core within the coil 

 By increasing the area A of the coil. However, increasing A beyond a certain limit will make the 

galvanometer bulky and unmanageable. 

 By decreasing the value of torsion constant k. The torsion constant k is made small by using 

suspension wire and springs of phosphor bronze. 

Advantages of a moving coil galvanometer:- 

 As the deflection of the coil is proportional to the current passed through it, so a linear scale can be 

used to measure the deflection. 

 A moving coil galvanometer can be made highly sensitive by increasing N, B, A, and decreasing k. 

 As the coil is placed in a strong magnetic field of a powerful magnet, its deflection is not affected by 

external magnetic fields. This enables us to use the galvanometer in any position. 

 As the coil is wound over a metallic frame, the eddy currents produced in the frame bring the coil 

to rest quickly. 

Disadvantages of a moving coil galvanometer:- 

 The main disadvantage is that its sensitiveness cannot be changed at will 

 All types of moving coil galvanometers are easily damaged by overloading. A current greater than 

that which the instrument is intended to measure will burn out its hairsprings or suspension. 

Example:- A rectangular coil of the area 
4 25.0 10 m  and 60 turns is pivoted about one of its vertical 

sides. The coil is in a radial horizontal field of 90G (radial here means the field lines are in the plane 

of the coil for any orientation). What is the torsional constant of the hairsprings connected to the coil 

if a current of 0.20 mA produces an angular deflection of 180? 



MOVING CHARGES AND  MAGNETISM] | PHYSICS| STUDY  NOTE 

 

ODM Educational Group Page 59 
 

Solution:- 4 4 2 3 090 90 10 , 5.0 10 , 0.20 0.20 10 , 60, 18B G T A m I mA A N              

The torsional constant of the hairspring is given by 
NIBA

k


  

3 4 4
1 9 160 0.2 10 90 10 5 10

deg 3.0 10 deg
18

Nm Nm
  

       
    

Example:- A rectangular coil having each turn of length 5cm and breadth 2 cm is suspended freely in 

a radial magnetic field of induction 
2 22.5 10 Wbm  , the torsional constant of the suspension fiber is 

8 11.5 10 Nmrad  . The coil deflects through an angle of 0.2 radian when a current of 2 A  is passed 

through it. Find the number of turns of the coil. 

Solution:-
4 2 3 25 2 10 10 10A cm cm m m       

2 2 8 12.5 10 , 1.5 10B Wbm k Nmrad        

60.2 , 2 2 10rad I A A       

As .
k

I
NBA

  .
k

N
IBA

  
8

6 2 3

1.5 10 0.2
60

2 10 2.5 10 10



  

 
 

   
 

Problems for Practice:- 

 A rectangular coil of area 100 cm2 and consisting of 100 turns is suspended in a magnetic field of 
25 10 T . What current should be made to pass through it in order to keep equilibrium at an angle 

of 450 with the field? Given that torsion constant of the suspension fiber is 8 110 degNm   

 The coil of the galvanometer consists of 250 turns of fine wire wound on a 2.0 1.0cm cm  

rectangular frame. It is suspended in a uniform radial magnetic field of strength 2,000 G. A current 

of 10-4 A produces an angular deflection of 300 in the coil. Find the torsional constant of its 

suspension. 

 A moving coil galvanometer is placed in a radial magnetic field of 0.2 T. The galvanometer coil has 

200 turns and an area of 
4 21.6 10 m . The torsion constant of the suspension fiber is 6 110 degNm  . 

Determine the maximum current that can be measured by the galvanometer if its scale can 

accommodate a deflection of 450. 
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 The coil of the moving coil galvanometer is 40 mm long and 25 mm wide. It has 100 turns and is 

suspended in a radial magnetic field of 10-2T. If the suspension fiber has a torsional constant of 10-

8Nndeg-1, find the current sensitivity of the moving coil galvanometer. 

 A coil of a moving coil galvanometer twists through 450 when a current of I micro-ampere is passed 

through it. If the area of the coil is 10-5m3 and it has 1000 turns, find the magnetic field of the 

magnet of the galvanometer. The restoring torque per unit twist of the galvanometer coil is 
4 110 Nmdeg  . 

 The coil of a pivoted type galvanometer has 50 turns and encloses an area of 6 m2. The magnetic 

field in the region in which the coil swings is 0.01 T and is radial. The torsional constant of the 

hairspring is 8 11.0 10 degNm  . Find the angular deflection of the coil for a current of 1 mA. 

Measurement of Current and Voltage:- 

Introduction:- A galvanometer is a basic instrument for electrical measurements. It is a sensitive 

current detector. It produces a deflection proportional to the current flowing through it. It can be easily 

converted into an ammeter for measuring current and into a voltmeter for measuring voltage.  

The following essential requirements should be met while converting a galvanometer into an ammeter 

or voltmeter. 

 The ammeter or voltmeter should be accurate, reliable, and sensitive. 

 The use of these devices in a circuit must not alter the current in the circuit or the potential 

difference across any element in the circuit. 

Conversion of a Galvanometer into an Ammeter:- 

An ammeter is a device used to measure the 

current through a circuit element. To measure 

the current through a circuit element, an 

ammeter is connected in series with that element 

so that the current which is to be measured 

actually passes through it. In order to ensure that 

its insertion in the circuit does not change the 

current, an ammeter should have zero resistance. So ammeter is designed to have very small effective 

resistance. In fact, an ideal ammeter should have zero resistance. An ordinary galvanometer is a 

sensitive instrument. It gives full-scale deflection with a small current of few microamperes. To 
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measure large currents with it, a small resistance is connected in parallel with the galvanometer coil. 

The resistance connected in this way is called a shunt. Only a small part of the total current passes 

through the galvanometer and the remaining current passes through the shunt. The value of shunt 

resistance depends on the range of the current required to be measured.  

Let G = resistance of the galvanometer 

sI = the current with which galvanometer gives a full-scale deflection 

0 I  = the required current range of the ammeter  

S = shunt resistance 

gI I  = current through the shunt. 

As galvanometer and shunt are connected in parallel, so P.D across the galvanometer = P.D across the 

shunt  g gI G I I S   

Or g

g

I
S = ×G

I - I
 

So by connecting a shunt of resistance S across the given galvanometer, we get an ammeter of the 

desired range. Moreover, 

g

S
I I

G S
 


 

The deflection in the galvanometer is proportional to 
gI  and hence to I. so the scale can be graduated 

to read the value of current I directly. 

Hence an ammeter is a shunted or low resistance galvanometer. Its effective resistance is. 

A

GS
R S

G S
 


 

What is a shunt? Mention its importance uses. 

Shunt:- A shunt is a low resistance that is connected in parallel with a galvanometer (or ammeter) to 

protect it from strong currents. 



MOVING CHARGES AND  MAGNETISM] | PHYSICS| STUDY  NOTE 

 

ODM Educational Group Page 62 
 

Uses of shunt:- 

 To prevent a galvanometer from being damaged due to large current. 

 To convert a galvanometer into ammeter 

 To increases the range of an ammeter. 

Conversion of a Galvanometer into a Voltmeter:- 

A voltmeter is a device for measuring 

potential difference across any two points in 

a circuit. It is connected in parallel with the 

circuit element across which the potential 

difference is intended to be measured. As a 

result, a small part of the total current passes 

through the voltmeter and so the current through the circuit element decreases. This decreases the 

potential difference required to be measured. To avoid this, the voltmeter should be designed to have 

very high resistance. In fact, an ideal voltmeter should have infinite resistance.  

A galvanometer can be converted into a voltmeter by connecting a high resistance in series with it. The 

value of this resistance is so adjusted that only current 
gI  which produces full-scale deflection in the 

galvanometer passes through the galvanometer.  

Let  G = resistance of the galvanometer 

gI  = the current with which galvanometer gives a full-scale deflection 

0 V  = required range of the voltmeter,  

R = the high series resistance which restricts the current to the safe limit gI  

The total resistance in the circuit = R + G 

By Ohm’s law  

tan
g

Potential difference V
I

Total resis ce R G
 


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Or 
g g

V V
R +G = or R = -G

I I
 

So by connecting a high resistance R in series with the galvanometer, we get a voltmeter of the desired 

range. Moreover, the deflection in the galvanometer is proportional to current Ig, and hence to V. The 

scale can be graduated to read the value of potential difference directly. Hence a voltmeter is a high 

resistance galvanometer. Its effective resistance is VR R G G    

Example:-  

A galvanometer with a coil of resistance 12.0  shows full-scale deflection for a current 2.5 mA. How 

will you convert the meter into (a) an ammeter of range 0 to 7.5 A (b) a voltmeter of range 0 to 10.0 

V?Determine the net resistance of the meter in each case. When an ammeter is put in a circuit, does 

it read 9slightly) less or more than the actual current in the original circuit? When a voltmeter is put 

across a part of the circuit, does it read (slightly) less or more than the original voltage drop? Explain. 

Solution:- 

(a) for conversion into the ammeter 

 12 , 2.5 0.0025 , 7.5g gR I mA A I A      

 
0.0025

12
7.5 0.0025

g

s g

g

I
R R

I I
   

 
 

 
3

32.5 12 10
4.0 10

7.4975


 

     

So by connecting a shunt resistance of 
34.0 10   in parallel with the galvanometer, we get an 

ammeter of range o to 7.5 A. 

Net resistance RA is given by 

3

1 1 1 3001

12 4 10 12AR 
  


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Or 312
4 10

3001
AR       

When an ammeter is put in a circuit, it reads slightly less than the actual current in the original circuit 

because a very small resistance is introduced in the circuit. 

(b) For conversion into voltmeter 

 312 , 2.5 10 , 10g gR I A V V       

 
3

10
12 4000 12 3988

2.5 10
g

g

V
R R

I 
       


 

So by connecting a resistance of 3988  in series with the galvanometer, we get a voltmeter of range 0 

to 10v.Net resistance,  3988 12 4000vR       

Because the voltmeter draws a small current for its deflection, so it reads slightly less than the original 

voltage drop. 

Example:- An ammeter of resistance 0.80  can measure currents up to 1.0 A (a) what must be the 

shunt resistance to enable the ammeter to measure current up to 5.0A? (b) what is the combined 

resistance of the ammeter and the shunt?  

Solution:- 

The given ammeter can be regarded as the galvanometer. 1.0 , 0.80g gI A R    

(a) The total current in the circuit, I = 5.0 A 

 The required shunt resistance,  

 
1.0

0.80 0.20
5.0 1.0

g

s g

g

I
R R

I I
     

 
 

(b) The combined resistance RA of the ammeter and the shunt is given by 

 
1 1 1 1 1 1 4 25

0.8 0.2 0.8 4A g sR R R


         

 Or 4 / 25 0.16AR     


