Chapter- 1&2

PHYSICAL WORLD AND MEASUREMENT

Very Short Answer Type Questions

01. Obtain a relation between microsecond & nanosecond.
02. The volume of a cube of side 1 cm is equal to ______ m³.
03. The relative density of lead is 4.3. Its density is ______ gcm⁻³ or ______ kgm⁻³.
04. G = 6.67 × 10⁻¹¹ Nm² (kg)⁻² = ______ (cm)³. S⁻². g⁻¹.
05. Define parsec.
06. Name four units used in the measurement of extremely short distances.
Short Answer Type Questions (2 marks):
07. State four physical quantities having the same dimensional formula.
08. Classify physical quantities based on dimensions.
09. Check the correctness of the equations. (i) v = u + at (ii) S = ut + ¹/₂at²

(iii)
$$v^2 - u^2 = 2as$$
 (iv) $T = 2\pi\sqrt{4}g$

- **10.** If the unit of length, mass & time each be doubled. What increase in the unit of work takes place?
- **11.** The velocity of a particle is given by $v = a + \frac{b}{t} + ct^2$ where a, b & c are constant. Find the

unit and dimensional formula of a, b & c.

ODM Educational Group

- **12.** If $force = \frac{x}{density} + c$ is it dimensionally correct? Find the dimension of 'x'?
- **13.** In the gas equation $\left[p + \frac{a}{V^2}\right] \left[V b\right] = RT$, where 'T' is absolute temperature, 'p' is the

pressure & 'V' is volume. What are the dimensions of constants 'a' & 'b'?

- 14. Convert force of 15 dynes into newton dimensionally.
- **15**. The density of water in the C.G.S system is 1 g/cm³. Find its value in the SI system dimensionally.

16. $y = \frac{x}{acceleration} \sin\left[\frac{x.force}{velocity}\right]$, find the units of x.

- 17. A book with many printing errors contains four different formulas for the displacement y of a particle undergoing a certain periodic motion.
 - (a) $y = a \sin 2\pi t / T$ (b) $y = a \sin v t$
 - (c) $y = (a/T)\sin\frac{t}{a}$ (d) $y = (a/\sqrt{2})\left(\sin\frac{2\pi t}{T} + \cos\frac{2\pi t}{T}\right)$

(a = maximum displacement of particle, v = speed of the particle, T = time period of motion). Role out the wrong formulas on dimensional grounds.

18. When the planet Jupiter is at a distance of 824.7 million kilometers from Earth, its angular diameter is measured to be 35.72" of arc. Calculate the diameter of Jupiter.

19. Pressure =
$$\frac{y^2}{velocity} \log \left\{ \frac{x \times force}{z^2} + \frac{y}{z} \right\}$$
, so, find x, y & z dimensionally.

20. Check the correctness of the equation, $V = \sqrt{\frac{2GM}{R}}$, where 'V' is escape velocity, G =

gravitational constant, M is the mass of earth & R is the radius of Earth.

21. Check the accuracy of the equation $\lambda = \frac{h}{m^2 V}$, where, is the wavelength, 'h' is the Planck's

constant, 'm' is the mass & 'V' is the velocity.

- **22.** The centripetal force depends on the mass of the planet, radius of the orbit & velocity of the planet. To derive an expression for the centripetal force with the help of dimensional analysis.
- 23. Force of viscosity (F) acting on a spherical body moving through a fluid depends upon its velocity (v), radius (r) & co-efficient of viscosity (η) of fluid. Find an expression for F using dimensional analysis.

Long Answer Type Questions (5 marks)

- 24. We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s, 2.80s. Calculate the absolute error, relative error & % error.
- **25.** Two forces $F_1 \& F_2$ acting simultaneously on a particle are measured as follows, $F_1 = (36 \pm 0.3)N$, $F_2 = (23 \pm 0.5)N$. What will be the resultant if they act in the same direction & opposite direction?
- **26.** The sides of a rectangle are measured to be $(20\pm0.2)m$ & $(10\pm0.1)m$. Find the perimeter of a rectangle with error limits.

ODM Educational Group

- 27. Focal lengths of spherical mirrors can be measured to be (3.5 ± 0.1) cm & (2.5 ± 0.2) cm. Calculate the sum & difference in their focal length with error limits.
- **28.** Two resistances $(5.1 \pm 0.03)\Omega$ and $(2.6 \pm 0.03)\Omega$ are connected in series in a circuit. Calculate the total resistance of the circuit with error limits.
- **29.** Determine the area of a platform whose length and breadth are measured as (123 ± 0.5) m & (75 ± 0.3) m.
- **30.** Find the relative error in Z if $Z = \frac{A^4 B^{1/3}}{C D^{3/2}}$.
- **31.** Describe four fundamental forces in nature.

