Chapter- 13

SURFACE AREAS AND VOLUMES STUDY NOTES

The surface area of a cuboid is equal to the sum of the areas of its six rectangular faces. Consider a cuboid whose dimensions are $l \times b \times h$, respectively.

Cuboid with length I, breadth b and height h

The total surface area of the cuboid (TSA) = Sum of the areas of all its six faces TSA (cuboid) = $2(I \times b) + 2(b \times h) + 2(I \times h) = 2(Ib + bh + Ih)$

Lateral surface area (LSA) is the area of all the sides apart from the top and bottom faces.

The lateral surface area of the cuboid = Area of face AEHD + Area of face BFGC + Area of face ABFE + Area of face DHGC

LSA (cuboid) = $2(b \times h) + 2(l \times h) = 2h(l + b)$

Length of diagonal of a cuboid $=VI^2 + b^2 + h^2$).

Cube and its Surface Area

For a cube, length = breadth = height

[SURFACE AREAS AND VOLUMES] | MATHEMATICS | STUDY NOTES

Cube with length / TSA (cube) =2 × (3|2) = $6l^2$ Similarly, the Lateral surface area of cube = $2(| \times | + | \times |) = 4l^2$ Note: Diagonal of a cube = $\sqrt{3}l$

Cylinder and its Surface Area

Take a cylinder of base radius r and height h units. The curved surface of this cylinder, if opened along the diameter (d = 2r) of the circular base can be transformed into a rectangle of length $2\pi r$ and height h units. Thus,

Transformation of a Cylinder into a rectangle. CSA of a cylinder of base radius *r* and height $h = 2\pi \times r \times h$ TSA of a cylinder of base radius *r* and height $h = 2\pi \times r \times h + a$ rea of two circular bases $=2\pi \times r \times h + 2\pi r^2$ $=2\pi r(h + r)$

Right Circular Cone and its Surface Area

Consider a right circular cone with slant length *I*, radius *r* and height *h*.

Cone with base radius r and height h

ODM Educational Group

CSA of right circular cone = πrl TSA = CSA + area of base = $\pi rl + \pi r^2 = \pi r(l + r)$

Sphere and its Surface Area

For a sphere of radius r

Curved Surface Area (CSA) = Total Surface Area (TSA) = $4\pi r^2$

Sphere with radius r

Volume of a Cuboid

Volume of a cuboid = (base area) × height = (lb)h = lbh

Volume of a Cube

Volume of a cube = base area × height Since all dimensions of a cube are identical, volume = I^3 Where *I* is the length of the edge of the cube.

Volume of a Cylinder

Volume of a cylinder = Base area × height = $(\pi r^2) \times h = \pi r^2 h$

ODM Educational Group

[SURFACE AREAS AND VOLUMES] | MATHEMATICS | STUDY NOTES

Cylinder with height h and base radius r

Volume of a Right Circular Cone

The volume of a Right circular cone is 1/3 times that of a cylinder of same height and base.

In other words, 3 cones make a cylinder of the same height and base.

The volume of a Right circular cone = $(1/3)\pi r^2 h$

Where *r* is the radius of the base and *h* is the height of the cone.

The volume of a Sphere

The volume of a sphere of radius $r = (4/3)\pi r^{3}$

Hemisphere and its Surface Area

Hemisphere of radius r

We know that the CSA of a sphere = $4\pi r^2$.

A hemisphere is half of a sphere. \therefore CSA of a hemisphere of radius $r = 2\pi r^2$ Total Surface Area = curved surface area + area of the base circlc \Rightarrow TSA = $3\pi r^2$

Volume of Hemisphere

The volume (V) of a hemisphere will be half of that of a sphere. \therefore The volume of the hemisphere of radius $r = (2/3)\pi r^3$

ODM Educational Group

If a right circular cone is sliced by a plane parallel to its base, then the part with the two circular bases is called a Frustum.

Frustum with radius r1 and r2 and height h

CSA of frustum = π (r1+r2)I, where I= ν [h²+(r2 - r1)²]

TSA of the frustum is the CSA + the areas of the two circular faces = $\pi(r1 + r2)I + \pi(r_1^2 + r_2^2)$

Volume of a Frustum

The volume of a frustum of a cone = $(1/3)\pi h(r_1^2 + r_2^2 + r_1r_2)$

