#### [CONSTRUCTIONS] | MATHEMATICS | STUDY NOTES

# Chapter- 11 CONSTRUCTIONS

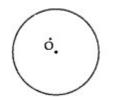
# **STUDY NOTES**

## Determining a Point Dividing a given Line Segment, Internally in the given Ratio M : N

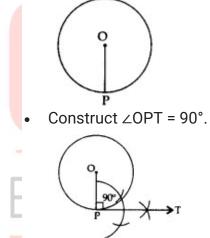
Let AB be the given line segment of length x cm. We are required to determine a point P dividing it internally in the ratio m : n.

#### **Steps of Construction:**

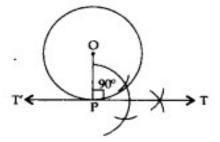
| Draw a line segment AB = x cm.<br>Make an acute $\angle$ BAX at the end A of AB.                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use a compass of any radius and mark off arcs. Take (m + n) points $A_1$ , $A_2$ , $A_m$ , $A_{m+1}$ ,, $A_{m+n}$ along AX such that $AA_1 = A_1A_2 = = A_{m+n-1}$ , $A_{m+n}$        |
| Join A <sub>m+n</sub> B.                                                                                                                                                              |
| Passing through $A_m$ , draw a line $A_m P \parallel A_{m+n} B$ to intersect AB at P. The point P so obtained is the A required point which divides AB internally in the ratio m : n. |
| $A_{m+n-1}$ $A_{m-1}$ $A_{m-1}$ $A_{2}$ $A_{1}$ $A_{2}$ $A_{1}$ $B$                                                                                                                   |


**ODM Educational Group** 

#### [CONSTRUCTIONS] | MATHEMATICS | STUDY NOTES


Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known

### **Steps of Construction:**


• Draw a circle with centre O of the given radius.



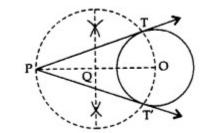
- Take a given point P on the circle.
- Join OP.



Produce TP to T' to get TPT' as the required tangent.



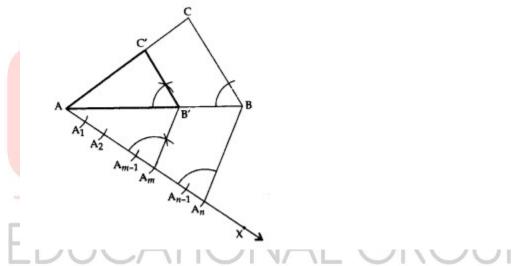
**ODM Educational Group** 


- Construction of a Tangent at a Point on a Circle to the Circle when its Centre is not Known
- If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of the circle. The point of intersection of perpendicular bisectors of these chords gives the centre of the circle. Then we can proceed as above.
- Construction of a Tangents from an External Point to a Circle when its Centre is Known

#### : Steps of Construction

- Draw a circle with centre O.
- Join the centre O to the given external point P.
- Draw a right bisector of OP to intersect OP at Q.
- Taking Q as the centre and OQ = PQ as radius, draw a circle to intersect the given circle at T and T'.

SNANN

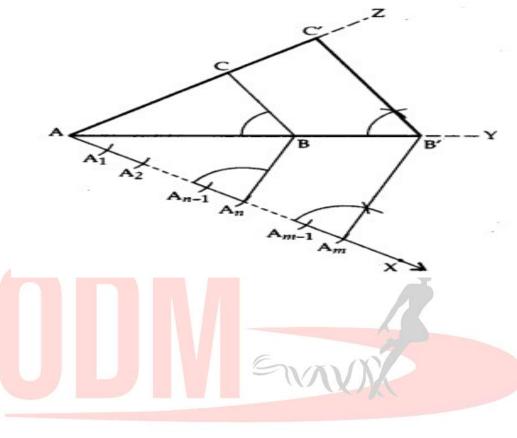

Join PT and PT' to get the required tangents as PT and PT'.



- Construction of a Tangents from an External Point to a Circle when its Centre is not Known
- If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of a circle. The point of intersection of perpendicular bisectors of the chords gives the centre of the circle. Then we can proceed as above.

Let  $\triangle ABC$  be the given triangle. To construct a  $\triangle A'B'C'$  such that each of its sides is mn (m < n) of the corresponding sides of  $\triangle ABC$ . Steps of Construction:

- Construct a triangle ABC by using the given data.
- Make an acute angle  $\angle$  BAX, below the base AB.
- Along AX, mark n points  $A_1$ ,  $A_2$  ...,  $A_n$ , such that  $AA_1 = A_1A_2 = ... = A_{m-1} A_m = ... A_{n-1} A_n$ .
- Join  $A_n B$ .
- From A<sub>m</sub>, draw A<sub>m</sub>B' parallel to AnB, meeting AB at B'.
- From B', draw B'C' parallel to BC, meeting AC at C'. Triangle AB'C' is the required triangle, each of whose sides is mn (m < n) of the corresponding sides of  $\Delta$ ABC.




Construction of a Triangle Similar to a given Triangle as per given Scale Factor  ${\rm mn}$  , m > n.

Let  $\triangle ABC$  be the given triangle and we want to construct a  $\triangle AB'C'$ , such that each of its sides is mn (m > n) of the corresponding side of  $\triangle ABC$ . Steps of Construction:

- Construct a  $\triangle ABC$  by using the given data.
- Make an acute angle  $\angle$ BAX, below the base AB. Extend AB to AY and AC to AZ.
- Along AX, mark m points  $A_1$ ,  $A_2$  ...,  $A_n$ , ... $A_m$ , such that  $AA_1 = A_1A_2 = A_2A_3 = ... = A_{n-1} A_n = ... = A_{m-1} A_m$
- Join A<sub>n</sub>B.
- From A<sub>m</sub>, draw A<sub>m</sub>B' parallel to A<sub>n</sub>B, meeting AY produced at B'.
- From B', draw B'C' parallel to BC, meeting AZ produced at C'.

• Triangle AB'C' is the required triangle, each of whose sides is (mn) (m > n) of the corresponding sides of  $\Delta ABC$ .



# EDUCATIONAL GROUP

Changing your Tomorrow

**ODM Educational Group**