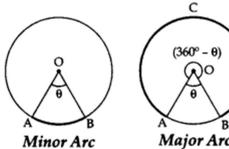

[AREAS RELATED TO CIRCLES] | MATHEMATICS | STUDY NOTES

Chapter- 12 AREAS RELATED TO CIRCLES

STUDY NOTES

Circumference of a circle = $2\pi r$ Area of a circle = πr^2 ...[where r is the radius of a circle] Area of a semi-circle = πr^2 Area of a circular path or ring:



Let 'R' and 'r' he radii of two circles

Then area of shaded part = $\pi R^2 - \pi r^2 = \pi (R^2 - r^2) = \pi (R + r)(R - r)$

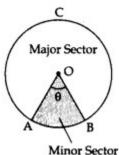
Minor arc and Major Arc: An arc length is called a major arc if the arc length enclosed by the

two radii is greater than a semi-circle.

If the arc subtends angle ' θ ' at the centre, then the

Length of minor arc = $\theta/360 \times 2\pi r = \theta/180 \times \pi r$

Length of major arc = $(360-\theta)/360 \times 2\pi r$


Sector of a Circle and its Area

A region of a circle is enclosed by any two radii and the arc intercepted between two radii is called the sector of a circle.

(i) A sector is called a minor sector if the minor arc of the circle is part of its boundary.

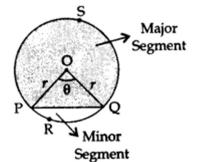
 OAB^{\wedge} is minor sector.

[AREAS RELATED TO CIRCLES] | MATHEMATICS | STUDY NOTES

Minor Sector

Area of minor sector = $\theta/360(\pi \Gamma^2)$

Perimeter of minor sector = $2r + \theta/360(2\pi r)$


ii) A sector is called a major sector if the major arc of the circle is part of its boundary. OACRA is major sector.

OACB[^] is major sector

Area of major sector = $(360-\theta)/360$ (πr^2)

Perimeter of major sector = $2r + (360 - \theta)/360)(2\pi r)$

Minor Segment: The region enclosed by an arc and a chord is called a segment of the circle. The region enclosed by the chord PQ & minor arc PRQ is called the minor segment.

Area of Minor segment = Area of the corresponding sector – Area of the corresponding triangle

$$= \left[\frac{\theta}{360}\pi r^2 - \frac{1}{2}r^2\sin\theta\right]$$
$$= \frac{1}{2}r^2 \left[\frac{\theta}{180}\pi - \sin\theta\right] \text{ or } \frac{1}{2}r^2 \left[\frac{\theta}{180}\pi - 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right]$$

Major Segment: The region enclosed by the chord PQ & major arc PSQ is called the major segment.

Area of major segment = Area of a circle – Area of the minor segment Area of major sector + Area of triangle [AREAS RELATED TO CIRCLES] | MATHEMATICS | STUDY NOTES

TABLE FOR AREA AND PERIMETER				
	Figures	Area	Perimeter	
Circle	0 • • •	πr^2 or $\frac{\pi d^2}{4}$	2πr or πd	$r : radius$ $d : diameter$ $\pi = \frac{22}{7} \text{ or } 3.14$
Semicircle	\bigcap_{r}	$\frac{\pi r^2}{2}$	πr + 2r	
Quadrant	Ņ	$\frac{\pi r^2}{4}$	$\frac{\pi r}{2} + 2r$	
Ring	R	$\pi(R+r)(R-r)$	2πR (Outer circu- mference) 2πr (Inner circum- ference)	R : Radius of bigger circle r : Radius of smaller circle
Sector	7 0 7	(i) $\frac{\theta}{360} \times \pi r^2$	$\frac{\theta}{360} \times 2\pi r + 2r$	r : Radius of circle
		(ii) $\frac{1}{2}lr$		1 : length of arc
Segment	(, è,	$\frac{\theta}{360} \pi r^2 - \frac{1}{2} r^2 \sin \theta$	$\frac{\pi r \theta}{180} + 2r \sin \frac{\theta}{2}$	θ : angle subtended by arc at centre

 $= \pi r^2 - \frac{\theta}{360}\pi r^2 + \frac{1}{2}r^2\sin\theta = r^2 \left[\pi - \frac{\theta}{360}\pi + \frac{\sin\theta}{2}\right]$

EDUCATIONAL GROUP

SWAY

ODM Educational Group