Chapter- 6 TRIANGLES

STUDY NOTES

SIMILAR FIGURES

- Two figures having the same shape but not necessary the same size are called similar figures.
- All congruent figures are similar, but all similar figures are not congruent.

SIMILAR POLYGONS

Two polygons are said to be similar to each other, if:

- (i) their corresponding angles are equal, and
- (ii) the lengths of their corresponding sides are proportional.

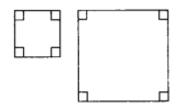
Example:

Any two line segments are similar since length are proportional

_____l_2

Any two circles are similar since radii are proportional

Any two squares are similar since corresponding angles are equal and lengths are proportional.

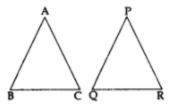


Note:

Similar figures are congruent if there is one to one correspondence between the figures.

 \therefore From above we deduce:

Any two triangles are similar, if their



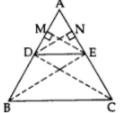
(i) Corresponding angles are equal $\angle A = \angle P$ $\angle B = \angle Q$ $\angle C = \angle R$

(ii) Corresponding sides are proportional AB/PQ=AC/PR=BC/QR

THALES THEOREM OR BASIC PROPORTIONALITY THEORY

Theorem 1: State and prove Thales' Theorem. Statement:

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.



Given: In $\triangle ABC$, DE || BC. To prove: AD/DB=AE/EC Const.: Draw EM \perp AD and DN \perp AE. Join B to E and C to D. Proof: In $\triangle ADE$ and $\triangle BDE$, ar($\triangle ADE$)/ar($\triangle BDE$)=1/2×AD×EM/1/2×DB×EM=AD/DB(i) [Area of $\triangle = 1/2$ x base x corresponding altitude In $\triangle ADE$ and $\triangle CDE$, ar($\triangle ADE$)/ar($\triangle CDE$)=1/2×AE×DN/1/2×EC×DN=AE/EC \therefore DE || BC ...[Given \therefore ar($\triangle BDE$) = ar($\triangle CDE$)

ODM Educational Group

...[: As on the same base and between the same parallel sides are equal in area From (i), (ii) and (iii), AD/DB=AE/EC

CRITERION FOR SIMILARITY OF TRIANGLES

Two triangles are similar if either of the following three criterion's are satisfied:

- AAA similarity Criterion. If two triangles are equiangular, then they are similar.
- **Corollary(AA similarity).** If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.
- **SSS Similarity Criterion.** If the corresponding sides of two triangles are proportional, then they are similar.
- **SAS Similarity Criterion.** If in two triangles, one pair of corresponding sides are proportional and the included angles are equal, then the two triangles are similar.

Results in Similar Triangles based on Similarity Criterion:

- 1. Ratio of corresponding sides = Ratio of corresponding perimeters
- 2. Ratio of corresponding sides = Ratio of corresponding medians
- 3. Ratio of corresponding sides = Ratio of corresponding altitudes
- 4. Ratio of corresponding sides = Ratio of corresponding angle bisector segments.

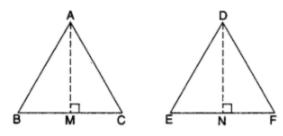
AREA OF SIMILAR TRIANGLES

Theorem 2.

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Given: ΔABC ~ ΔDEF

To prove: $ar(\Delta ABC)/ar(\Delta DEF)=AB^2/DE^2=BC^2/EF^2=AC^2/DF^2$ Const.: Draw AM \perp BC and DN \perp EF. Proof: In $\triangle ABC$ and $\triangle DEF$



ar(ΔABC)/ar(ΔDEF)=1/2×BC×AM/1/2×EF×DN=BC/EF.AM/DN ...(i)[Area of Δ = 12 x base x corresponding altitude

ODM Educational Group

 $\begin{array}{l} \because \Delta ABC \simeq \Delta DEF \\ \therefore ABDE=BCEF(ii) ...[Sides are proportional \\ \angle B = \angle E[\because \Delta ABC \simeq \Delta DEF \\ \angle M = \angle N[each 90° \\ \therefore \Delta ABM \simeq \Delta DEN[AA similarity \\ \therefore AB/DE=AM/DN(iii) ...[Sides are proportional \\ From (ii) and (iii), we have: BC/EF=AM/DN(iv) \\ From (i) and (iv), we have: ar(\Delta ABC)/ar(\Delta DEF)=BC/EF.BC/EF=BC^2/EF^2 \\ Similarly, we can prove that \\ ar(\Delta ABC)/ar(\Delta DEF)=AB^2/DE^2=AC^2/DF^2 \\ \therefore ar(\Delta ABC)/ar(\Delta DEF)=AB^2/DE^2=BC^2/EF^2=AC^2/DF^2 \end{array}$

Results based on Area Theorem:

- Ratio of areas of two similar triangles = Ratio of squares of corresponding altitudes
- 2. Ratio of areas of two similar triangles = Ratio of squares of corresponding medians
- 3. Ratio of areas of two similar triangles = Ratio of squares of corresponding angle bisector segments.

Note:

If the areas of two similar triangles are equal, the triangles are congruent.

Theorem 3:

State and prove Pythagoras' Theorem.

Statement:

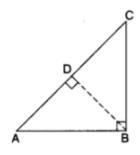
Prove that, in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: $\triangle ABC$ is a right triangle right-angled at B.

To prove: $AB^2 + BC^2 = AC^2$

Const.: Draw BD ⊥ AC

Proof: In Δs ABC and ADB,



 $\angle A = \angle A \dots$ [common $\angle ABC = \angle ADB \dots [each 90^{\circ}]$ $\therefore \Delta ABC \sim \Delta ADB \dots [AA Similarity]$: ABAD=ACAB[sides are proportional] $\Rightarrow AB^2 = AC.AD$ Now in $\triangle ABC$ and $\triangle BDC$ $\angle C = \angle C \dots [common]$ $\angle ABC = \angle BDC \dots [each 90^{\circ}]$ $\therefore \Delta ABC \sim \Delta BDC \dots [AA similarity]$: BCDC=ACBC[sides are proportional] $BC^2 = AC.DC...(ii)$ On adding (i) and (ii), we get $AB^2 + BC^2 = ACAD + AC.DC$ $\Rightarrow AB^2 + BC^2 = AC.(AD + DC)$ $AB^2 + BC^2 = AC.AC$ $\therefore AB^2 + BC^2 = AC^2$

CONVERSE OF PYTHAGORAS THEOREM

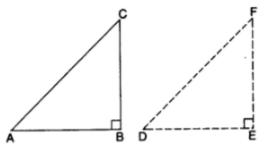
🗸 Changing your Tomorrow 💻

Theorem 4:

State and prove the converse of Pythagoras' Theorem.

Statement:

Prove that, in a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.



ODM Educational Group

```
Given: In \triangle ABC, AB^2 + BC^2 = AC^2
To prove: \angle ABC = 90^{\circ}
Const.: Draw a right angled \Delta DEF in which DE = AB and EF = BC
Proof: In \triangle ABC,
AB^{2} + BC^{2} = AC^{2} ...(i) [given]
In rt. ΔDEF
DE^2 + EF^2 = DF^2 ... [by pythagoras theorem]
AB^{2} + BC^{2} = DF^{2} \dots (ii) \dots [DE = AB, EF = BC]
From (i) and (ii), we get
AC^2 = DF^2
\Rightarrow AC = DF
Now, DE = AB ...[by cont]
EF = BC ... [by cont]
DF = AC ......[proved above]
\therefore \Delta \text{DEF} \cong \Delta \text{ABC} \dots [\text{sss congruence}]
\therefore \angle DEF = \angle ABC \dots [CPCT]
\angle DEF = 90^{\circ} \dots [by cont]
\therefore \angle ABC = 90^{\circ}
```

Results based on Pythagoras' Theorem:

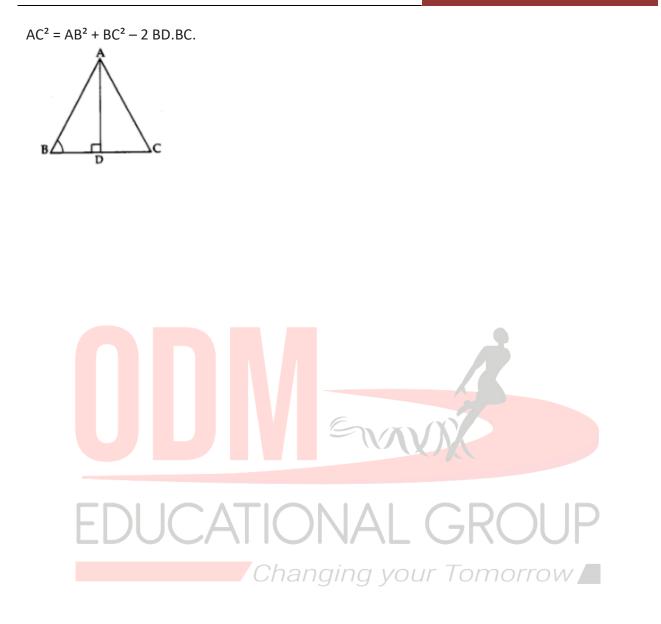
(i) Result on obtuse Triangles.

If \triangle ABC is an obtuse angled triangle, obtuse angled at B, If AD \perp CB, then AC² = AB² + BC² + 2 BC.BD

pЬ

(ii) Result on Acute Triangles.

If \triangle ABC is an acute angled triangle, acute angled at B, and AD \perp BC, then



ODM Educational Group

Page 7