Chapter- 8 INTRODUCTION TO TRIGONOMETRY

STUDY NOTES

 <u>Trigonometric Ratios</u>: Ratios of sides of right triangle are called trigonometric ratios.
Consider triangle ABC right-angled at B. These ratios are always defined

with respect to acute angle 'A' or angle 'C.

- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the 'θ' being considered.

(i) sine A = perpendicular/hypotenuse=BC/AC	(i) sine C = perpendicular/Hypotenuse=ABAC
(ii) cosine A = base/hypotenuse=AB/AC	(ii) cosine C = base/hypotenuse=BC/AC
(iii) tangent A = perpendicular/base=BC/AB	(iii) tangent C = perpendicular/base=AB/BC

ODM Educational Group

INTRODUCTION TO TRIGONOMETRY | MATHEMATICS | STUDY NOTES

(iv) cosecant A = hypotenuse/perpendicular=AC/BC	(iv) cosecant C = hypotenuse/perpendicular=AC/AB
(v) secant A = hypotenuse/base=AC/AB	(v) secant C = hypotenuse/base=AC/BC
(v) cotangent A = base/perpendicular=AB/BC	(v) cotangent C = base/perpendicular=BC/AB

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:

 $\tan \theta = \sin \theta \cos \theta$ $\cot \theta = \cos \theta \sin \theta$

- $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \sin^2 \theta = 1 \cos^2 \theta \Rightarrow \cos^2 \theta = 1 \sin^2 \theta$
- $\csc^2 \theta \cot^2 \theta = 1 \Rightarrow \csc^2 \theta = 1 + \cot^2 \theta \Rightarrow \cot^2 \theta = \csc^2 \theta 1$ •
- $\sec^2 \theta \tan^2 \theta = 1 \Rightarrow \sec^2 \theta = 1 + \tan^2 \theta \Rightarrow \tan^2 \theta = \sec^2 \theta 1$ •
- $\sin \theta \csc \theta = 1 \Rightarrow \cos \theta \sec \theta = 1 \Rightarrow \tan \theta \cot \theta = 1$

[INTRODUCTION TO TRIGONOMETRY | MATHEMATICS | STUDY NOTES

A t-ratio only depends upon the angle ' θ ' and stays the same for same angle of different sized right triangles.

Value of t-ratios of specified angles:

∠A	0°	30°	45°	60°	90°
sin A	0	12	12√	3√2	1
cos A	1	3√2	12√	12	0
tan A	0	13√	1	√3	not defined
cosec A	not defined	2	√2	23√	1
sec A	1	23√	√2	2	not defined
cot A	not defined	√3	1	13√	0

The value of sin θ and cos θ can never exceed 1 (one) as opposite side is 1. Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled Δ .

't-RATIOS' OF COMPLEMENTARY ANGLES

If $\triangle ABC$ is a right-angled triangle, right-angled at B, then $\angle A + \angle C = 90^{\circ} [\because \angle A + \angle B + \angle C = 180^{\circ} \text{ angle-sum-property}]$ or $\angle C = (90^{\circ} - \angle A)$

Thus, $\angle A$ and $\angle C$ are known as complementary angles and are related by the following relationships:

 $sin (90^{\circ} - A) = cos A; cosec (90^{\circ} - A) = sec A$ $cos (90^{\circ} - A) = sin A; sec (90^{\circ} - A) = cosec A$ $tan (90^{\circ} - A) = cot A; cot (90^{\circ} - A) = tan A$

