

CIRCLES PPT-4

SUBJECT : MATHEMATICS CHAPTER NUMBER: 10 CHAPTER NAME : CIRCLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

ii) When a point of tangency lies on the circle, there is **exactly one tangent** to a circle that passes through it.

PREVIOUS KNOWLEDGE TEST i) If the point is in an interior region of the

i) If the point is in an **interior region of the circle**, any line through that point will be a secant. So, **no tangent** can be drawn to a circle which passes through a point that lies inside it.

iii) When the point lies outside of the circle, there are **accurately two tangents** to a circle through it

The length of the segment of the tangent from the external point and the point of contact with the circle is called the length of the tangent.

LEARNING OUTCOME

1.Students will be able to prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

2. Students will be able to prove that he lengths of tangents drawn from an external point to a circle are equal.

3. Students will be able to apply the knowledge of above theorem in solving questions

Quick revision on Circles https://youtu.be/JZ2cEB4_aAA (11.04)

1. A circle is inscribed in a \triangle ABC, such that it touches the sides AB, BC and CA at points D, E and F respectively. If the lengths of sides AB, BC and CA are 12 cm, 8 cm and 10 cm respectively, find the lengths of AD, BE and CF.

1. A circle is inscribed in a \triangle ABC, such that it touches the sides AB, BC and CA at points D, E and F respectively. If the lengths of sides AB, BC and CA are 12 cm, 8 cm and 10 cm respectively, find the lengths of AD, BE and CF.

Given, AB = 12 cm, CA = 10 cm, BC = 8 cm $AD = AF = x \quad [\because \text{ Tangent drawn from external point to circle are equal}]$ $\therefore DB = BE = 12 - x \text{ and } CF = CE = 10 - x$ $BC = BE + EC \implies 8 = 12 - x + 10 - x$ $\Rightarrow x = 7$ $\therefore AD = 7 \text{ cm}, BE = 5 \text{ cm and } CF = 3 \text{ cm}$

2. A triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of Δ ABC is 54 cm², then find the lengths of sides AB and AC.

2. A triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of \triangle ABC is 54 cm², then find the lengths of sides AB and AC

Let $AF = x \text{ cm}$, $BC = (6 + 9) = 15 \text{ cm}$				
Ψ.	AF = AE			
	[tangents drawn from an external point are equal]			
1. C	AE = x cm			
Also	BD = BF = 6 cm			
and	CD = CE = 9 cm			
4 N	AB = (x + 6) cm			
In ΔABC,	AC = (x + 9) cm	6		
	Area $\triangle ABC = Area \triangle BOC + Area \triangle COA + Area \triangle AOB$	/		
⇒	$54 = \frac{1}{2} BC \times OD + \frac{1}{2} AC \times OE + \frac{1}{2} AB \times OF$	1		
⇒	$54 \times 2 = 15 \times 3 + (9 + x) \times 3 + (6 + x) \times 3$			
	108 = 45 + 18 + 3x + 27 + 3x			
	$6x = 18 \Rightarrow x = 3$			
⇒	AB = 6 + x = 6 + 3 = 9 cm			
	AC = 9 + x = 9 + 3 = 12 cm			

3. A circle inscribed in \triangle ABC, touches its sides BC, CA and AB at the points P, Q and R respectively. If AB = AC, then prove that BP = CP.

3. A circle inscribed in \triangle ABC, touches its sides BC, CA and AB at the points P, Q and R respectively. If AB = AC, then prove that BP = CP.

4...Prove that the parallelogram circumscribing a circle is a rhombus.

4.. Prove that the parallelogram circumscribing a circle is a rhombus.

Hence, ABCD is a rhombus as all sides are equal in rhombus.

5. From a point P, two tangents PT and PS are drawn to a circle with centre O such that \angle SPT = 120°, Prove that OP = 2PS

,

.

 $\overline{}$

5. From a point P, two tangents PT and PS are drawn to a circle with centre O such that \angle SPT = 120°, Prove that OP = 2PS

Let $PT = x = PS$	[:: Tangent drawn from external		
	point to circle	e are equal]	
	$\angle SPT = 120^{\circ}$		
In $\triangle OTP$ and $\triangle OSP$,	$\angle OTP = \angle OSP$		
	[: each equal to 90°, since tangent perpendicular r radius]		
	OT = OS	[∵ Equal radii]	
	OP = OP	[common]	
⇒	$\triangle OSP \cong \triangle OTP$	[: By SAS congruence rule]	
	∠TPO = ∠SPO	[∵ By CPCT]	
⇒	$\angle TPO = \frac{1}{2} \angle SPT = \frac{1}{2}$	$\times 120 = 60^{\circ}$	
In ∆OTP,	$\frac{OP}{OP} = \frac{2}{Sec} \frac{2}{60^\circ}$		
	X OP		
⇒	$\frac{OP}{OP} = 2 \implies OP =$	$2x \Rightarrow OP = 2PS$	
Hence proved.	x		

HOME ASSIGNMENT CH10.

-

1

THANKING YOU ODM EDUCATIONAL GROUP