

CONSTRUCTIONS PPT-3

SUBJECT : MATHEMATICS CHAPTER NUMBER: 11 CHAPTER NAME : CONSTRUCTIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: 1800 120 2316

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known

o

- Draw a circle with Centre O of the given radius.
- Take a given point P on the circle.
- Join OP.
- •Construct $\angle OPT = 90^{\circ}$.
- Produce TP to T' to get TPT' as the required tangent.

ċ.

LEARNING OUTCOME

1. Students will be able to learn to divide a line segment internally in a given ratio.

2.Students will be able to construct a triangle similar to a given triangle as per given scale factor which may be less than 1 or greater than 1.

3. Students will be able to construct the pair of tangents from an external point to a circle.

1.Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are 3 /4 of the corresponding sides of the triangle ABC.

Steps of Construction:

1. Draw a line segment BC = 6 cm and at point B draw an ∠ABC = 60°.

2. Cut AB = 5 cm. Join AC. We obtain a \triangle ABC.

3. Draw a ray BX making an acute angle with BC on the side opposite to the vertex A.

4. Locate 4 points A_1 , A_2 , A_3 and A_4 on the ray BX so that $BA_1 = A_1A_2 = A_2A_3 = A_3A_4$. 5. Join A₄ to C.

- 6. At A₃, draw A₃C' II A₄C, where C' is a point on the line segment BC.
- 7. At C', draw C'A' II CA, where A' is a point on the line segment BA.
- $\therefore \Delta A'BC'$ is the required triangle.

Justification: In $\Delta A'BC'$ and ΔABC ,			
	A'C' AC		
3	A'B <u>BC'</u>	(By the Basic Proportionality Theorem) $\dots(i)$	
	AB BC	(b) the basic reportionally recording in()	
In $\Delta BA_3C'$ and ΔBA_4C ,			
110 me 8 1991	A ₃ C' A ₄ C	5 K	
53	$\frac{BC'}{BC} = \frac{BA_3}{BA_4} =$	$=\frac{3}{4}$ (By the Basic Proportionality Theorem)	
зĂ.	$\frac{BC'}{BC} = \frac{3}{4}$	(<i>ii</i>)	
From (i) and (ii), we get			
	$\frac{A'B}{AB} = \frac{3}{4} \Rightarrow$	$A'B = \frac{3}{4}AB$	
:. Sides of new triangle f	formed are $\frac{3}{4}$ time	s the corresponding sides of first triangle.	

2. Draw a triangle ABC with side BC = 7 cm, \angle B = 45°, \angle A = 105°. Then, construct triangle whose sides are 4 /3 times the corresponding sides of \triangle ABC

Steps of Construction:	Justification:	
1. Draw a line segment BC – 7 cm.	In $\triangle ABC$ and $\triangle A'BC'$,	
2. Draw ∠ABC = 45° and ∠ACB = 30°, i.e., ∠BAC = 105°.	$\angle ABC = \angle A'BC'$	[Common]
3. We get ∆ABC	$\angle ACB = \angle A'C'B$	[Corresponding angles]
4. Draw a ray BX making an acute angle with BC	$\therefore \Delta ABC \sim \Delta A'BC'$	[By AA similarity]
5. Mark four points B_1 , B_2 , B_3 and B_4 on BX, such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.	$\therefore \frac{AB}{AB} = \frac{AC}{AB} = \frac{BC}{BC}$	
6. Join B ₃ C.	A'B A'C' BC'	
7. Through B_4 draw a line B_4C' parallel to B_3C , intersecting the extended line segment BC at C'.	But, $\frac{BC}{RR} = \frac{BB_3}{RR} = \frac{3}{RR}$	
8. Through C', draw a line A'C' parallel to CA, intersecting the extended line segment BA at A'.	$BC' BB_4 4$	8
Thus, A'BC' is the required triangle.	$\therefore \qquad \frac{BC'}{BC} = \frac{4}{3}$	

 $\frac{A'C'}{AC}$

AB

 $\frac{BC'}{BC} = \frac{4}{3}.$

3. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60 degree.

Steps of Construction

- 1. Draw a circle with center O and radius 5 cm.
- 2. Draw any radius OA.
- 3. Construct $\angle AOB = 180^{\circ} 60^{\circ} = 120^{\circ}$.
- 4. Draw $AM \perp OA$ and $BN \perp OB$. Let the two perpendiculars meet at point P.

Then, PA and PB are the required tangents to the given circle, inclined at an angle 60°.

FIGURE 11.20

Justification. In quadrilateral OAPB, we have

 \Rightarrow

. .

 $\angle OAP + \angle APB + \angle OBP + \angle AOB = 360^{\circ}$

 $90^{\circ} + \angle APB + 90^{\circ} + 120^{\circ} = 360^{\circ}$

 $\angle APB = 360^{\circ} - (90^{\circ} + 90^{\circ} + 120^{\circ}) = 60^{\circ}$

1

4. Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and \angle B = 90°. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

Steps of Construction

- 1. Construct a right $\triangle ABC$ with AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$.
- 2. Draw $BD \perp AC$.
- 3. Draw the perpendicular bisector of BC which intersects it at O.
- 4. With O as centre and OB as radius, we draw a circle. Thus, we get a circle passing through B, C and D.
- 5. With A as centre and radius = AB = 6 cm, draw an arc which intersects the above circle at *P*.
- 6. Join AP.

Then, AB and AP are the required tangents from A to the circle passing through B, C and D.

Justification. As $\angle BDC = 90^\circ$, so *BC* is a diameter of the circle. The circle of radius *OB* passes through *B*, *C* and *D*.

 $\angle OBA = 90^{\circ}$

 \Rightarrow

 $AB \perp OB$

Since, *OB* as a radius of the given circle, *AB* has to be a tangent to the circle.

By construction, AP = PB

Hence, AP is also a tangent to this circle.

HOME ASSIGNMENT: Ex-11.2 Q1 to Q3 AHA

~

1. Draw a line segment AB of length 8 cm. Taking A as Centre, draw a circle of radius 4 cm and taking B as Centre, draw another circle of radius 3 cm. Construct tangents to each circle from the Centre of the other circle.

THANKING YOU ODM EDUCATIONAL GROUP