

POLYNOMIALS

PPT-2

SUBJECT: MATHEMATICS

CHAPTER NUMBER: 02

CHAPTER NAME: POLYNOMIALS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

- 1..Students will be able to Students will be able to **know the** relationship between zeroes and coefficients of a quadratic polynomial
- 2.. Students will be able to solve questions involving relationship between zeroes and coefficients of a quadratic polynomial

PREVIOUS KNOWLEDGE TEST

O 1A polynomial p(x) in one variable x is analgebraic expression in x of the form

$$p(x) = a_n x n + a_{n-1} x n - 1 + ... + a_{n-1} x n$$

where $a_0, a_1, a_2, \ldots, a_n$ are **constants(realnumbers)** and $a_n \neq 0$.

- 2. Every **linear polynomial** in one variable has a**unique zero**, a non-zero constant polynomialhas no zero, and every real number is a zero ofthe zero polynomial
- 3 A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have atmost 3 zeroes
- 4. General form of linear polynomials ax + b where $a \neq 0$
- 5. General from of quadratic polynomials $ax^2 + bx + c$ where $a \ne 0$
- 6. General form of cubic polynomial $ax^3 + bx^2 + cx + d$, where $a \ne 0$

Relationship between zeros and coefficient https://youtu.be/5FR1Hix5WLk {8.06}

: Find the zeroes of the quadratic polynomial x^2 + 7x + 10, and verify the relationship between the zeroes and the coefficients.

Solution : We have
$$x^2 + 7x + 10$$

$$=(x+2)(x+5)$$

So, the value of
$$x^2$$
 + 7x + 10 is zero when x + 2 = 0 or x + 5 = 0, i.e., when x =

– 2 or

$$x = -5$$
. Therefore, the zeroes of $x^2 + 7x + 10$ are -2 and -5 .

Now,

sum of zeroes =
$$(-2 (-5) = -(7) = -$$

(iii)
$$6x^2 - 3 - 7x$$

$$=6x^2-7x-3$$

$$=6x^2-9x+2x-3$$

$$=3x(2x-3)+1(2x-3)$$

$$=(3x+1)(2x-3)$$

The value of
$$6x^2 - 7x - 3$$
 is zero if $3x + 1 = 0$ or $2x - 3 = 0$.

$$\Rightarrow x = -\frac{1}{3}$$
 or $x = \frac{3}{2}$.

Therefore, the zeroes of
$$6x^2 - 7x - 3$$
 are $-\frac{1}{3}$ and $\frac{3}{2}$. Now

Sum of zeroes
$$= -\frac{1}{3} + \frac{3}{2} = \frac{-2+9}{6} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(Cofficient of x)}{Cofficient of x^2}$$

Product of zeroes =
$$\left(-\frac{1}{3}\right) \times \frac{3}{2} = -\frac{1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Cofficient of } x^2}$$

- : Find a quadratic polynomial, the sum and product of whose zeroes are 3 and 2, respectively.
- Solution : Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be α and β . We have $\alpha + \beta = -3 = -b$ /a , and $\alpha\beta = 2 = c$ /a . If a = 1, then b = 3 and c = 2.
- So, one quadratic polynomial which fits the given conditions is $x^2 + 3x + 2$..

•

:HOME ASSIGNMENT Ex. 2.2 Q. No 1 &2 & .

AHA

- 1. If α , β are the two zeroes of the polynomial $6y^2-7y+2$, find a quadratic polynomial whose zeroes are $1/\alpha$ and $1/\beta$.
- 2. . If α , β are the two zeroes of the polynomial 3x² 4x +1 , find a quadratic polynomial whose zeroes are α 2 & β 2 .
- 3. If α,β are the two zeroes of the polynomial $3x^2 + 2x + 1$, find the quadratic polynomial whose zeroes are $1 \alpha/1 + \alpha & 1 \beta/1 + \beta$
- 4. . If α , β are the two zeroes of the polynomial $2x^2-5x+7$, find the quadratic polynomial whose zeroes are $2\alpha+3\beta$ and $3\alpha+2\beta$.

THANKING YOU ODM EDUCATIONAL GROUP