

### PAIR OFLINEAR EQUATION IN TWO VARIABLES INTRODUCTION SUBJECT: MATHEMATICS

# SUBJECT: MATHEMATICS CHAPTER NO:3

**CHAPTER NAME: LINEAR EQUATION IN TWO VARIABLES** 

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024



#### LEARNING OUTCOME

•

Students will be able to define linear equations in two variables ,
 Students will be able to express linear equations in two variables in general form.

3.Students will be able to represent graphically linear equations in two variables.



#### General form of a Linear Equation in Two Variables

The general form of a linear equation in two variables is ax + by + c = 0, where a and b cannot be zero simultaneously. The graph of a linear equation is a straight line.

Two linear equations in the same two variables are called a pair of linear equations in two variables. The most general form of a pair of linear equations is:  $a_1x + b_1y + c_1 = 0$ ;  $a_2x + b_2y + c_2 = 0$ where  $a_1$ ,  $a_2$ ,  $b_1$ ,  $b_2$ ,  $c_1$  and  $c_2$  are real numbers, such that  $a_1^2 + b_1^2 \neq 0$ ,  $a_2^2 + b_2^2 \neq 0$ .

•A pair of values of variables 'x' and 'y' which satisfy both the equations in the given system of equations is said to be a solution of the simultaneous pair of linear equations.

•A pair of linear equations in two variables can be represented and solved, by (i) Graphical method

(ii) Algebraic method



A pair of linear equations in two variables can be represented and solved, by
(i) Graphical method
(ii) Algebraic method

Types of algebraic method;

- 1.Substitution method
- 2.Elimination method
- 3. Cross-multiplication method.



# Introduction to linear equation in two variables

https://youtu.be/NJU6gClTinl



1. Aftab tells his daughter, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be." (Isn't this interesting?) Represent this situation algebraically and graphically

https://youtu.be/TDe64q-xuY4 (10.2)



1 Aftab tells his daughter, "seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be. Represent this situation algebraically and graphically." [NCERT]

**Solution.** Let the present age of the daughter = x years

| 7 years ago daughter's age                    | =(x-7) years                                |               |
|-----------------------------------------------|---------------------------------------------|---------------|
| 3 years from now, daughter's age              | =(x+3) years                                | • )           |
| Let the present age of father                 | =y years                                    |               |
| 7 years ago father's age                      | =(y-7) years                                |               |
| 3 years from now father's age                 | =(y+3) years                                |               |
| Seven years ago, Aftab's age =7× da           | ughter's age $\Rightarrow y - 7 = 7(x - 7)$ |               |
| Three years later, Aftab's age $=3 \times da$ | sughter's age $\Rightarrow$ $y+3=3(x+3)$    |               |
| or $y = 7x - 42$                              |                                             | (i)           |
| and $y = 3x + 6$                              |                                             | ( <i>ii</i> ) |

Equations (*i*) and (*ii*) are the algebraic representations of the given situations. For graphical representations, we find atleast two solutions of each equation.

*Table* : Solutions of y = 7x - 42

| x       | 12                      | 18                      |
|---------|-------------------------|-------------------------|
| y=7x-42 | $7 \times 12 - 42 = 42$ | $7 \times 18 - 42 = 84$ |



We plot the points A(12, 42) and B(18, 84) on a graph paper.

The line *AB* is a graphical representation of y = 7x - 42.

*Table* : Solutions of y = 3x + 6

| x          | 6                     | 12                     |
|------------|-----------------------|------------------------|
| y = 3x + 6 | $3 \times 6 + 6 = 24$ | $3 \times 12 + 6 = 42$ |

We plot the point C(6, 24) on the same graph paper. Point A(12, 42) is already plotted.

The line *BC* is a graphical representation of y = 3x + 6.

NOTE From the graph, the two lines intersect at the point (12, 42).

 $\therefore$  x = 12 and y = 42 is the solution of equations (*i*) and (*ii*).

Present age of daughter = x = 12 years

Present age of father = y = 42 years





2 The coach of cricket team buys 3 bats and 6 balls for ₹3900. Later, she buys another bat and 3 more balls of same kind for ₹1500. Represent this situation algebraically and geometrically.

**Solution.** Let the cost of one bat be  $\mathbf{E} x$ 

and the cost of one ball be  $\overline{\mathbf{v}}_y$ 

Then according to given condition, we have

$$3x + 6y = 3900 \implies x + 2y = 1300 \qquad \dots (1)$$

also

 $x + 3y = 1500 \implies x + 3y = 1500$  ...(ii)

Equations (i) and (ii) are the algebraic representations of the given situation.

For graphical representations, we find two solutions of each equation.

*Table* : Solutions of x + 2y = 1300

| x            | 1300            | 0              |
|--------------|-----------------|----------------|
| x = 1300 - x | 1300 - 1300 - 0 | 1300 - 0 = 650 |
| <i>y</i> = 2 | 2 = 0           | 2 = 050        |

We plot points A(1300, 0) and B(0, 650) on a graph paper.

The line *AB* is the graph of x + 2y = 1300

*Table* : Solutions of x + 3y = 1500

| x            | 1500        | 0              |
|--------------|-------------|----------------|
| 1500 - x     | 1500 - 1500 | 1500 - 0 = 500 |
| <i>y</i> - 3 | 3           | 3 = 500        |

We plot the points P(1500, 0) and Q(0, 500) on a graph paper.

The line *PQ* is the graph of x + 3y = 1500.



#### FIGURE 3.4

NOTE From the graph, the two lines intersect at the point (900, 200).

 $\therefore x = 900$  and y = 200 is a solution of the equations (i) and (ii).

Cost of a bat = x = ₹ 900 and cost of a ball = y = ₹ 200

~



## HOME ASSIGNMENT; Ex. 3.1 & AHA

- 1 Solve the system of equation 2x + y = -4 and 5x 3y = 1 by the method of elimination
- 2. Solve the system of equation 2x + 3y = 11, x + 2y = 7 by the method of elimination



# THANKING YOU ODM EDUCATIONAL GROUP