

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PPT6

SUBJECT : MATHEMATICS CHAPTER NUMBER: 03 CHAPTER NAME : PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: 1800 120 2316 Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Substitution method

If we have a pair of Linear Equations with two variables x and y, then we have to follow these steps to solve them with the substitution method-

Step 1: We have to choose any one equation and find the value of one variable in terms of other variable i.e. y in terms of x.

Step 2: Then substitute the calculated value of y in terms of x in the other equation.

Step 3: Now solve this Linear Equation in terms of x as it is in one variable only i.e. x.

Step 4: Substitute the calculate value of x in the given equations and find the value of y.

Learning outcome

- Students will be able to find solution of a pair of linear equations algebraically by Substitution method.
- > Students will be able to apply it to solve real life situations.

•Solution Using Elimination with Two Variables

•Arrange both equations in standard form, placing like variables and constants one above the other.

•Choose a variable to eliminate, and with a proper choice of multiplication, arrange so that the coefficients of that variable are opposites of one another.

- •Add the equations, leaving one equation with one variable
- •Solve for the remaining variable.
- •Substitute the value found in Step 4 into any equation involving both variables and solve for the other variable.

•Check the solution in both original equations

Discussion on solving a pair of linear equations using Elimination method.

https://youtu.be/Dm1rrr6ROVU

Solve the following pair of linear equations by the elimination method d and the substitution method : 3x - 5y - 4 = 0 and 9x = 2y + 7

...(i)

...(*ii*)

 \Rightarrow

(iii) By Elimination Method:

Equations are

and

$$9x - 2y = 7$$

3x - 5y = 4

Multiplying equation (i) by 3 and subtracting from equation (ii),

$$9x - 2y = 7$$

$$9x - 15y = 12$$

$$- \frac{13y = -5}{y = \frac{-5}{13}}$$

Putting this value of y in equation (i), we get

By Substitution Method:

3x - 5y = 4...(i) We have 9x - 2y = 7...(*ii*) and

From equation (i), $x = \frac{4+5y}{3}$

Putting this value in equation (ii), we get

$$9\left[\frac{4+5y}{3}\right] - 2y = 7 \Rightarrow 3[4+5y] - 2y = 7$$
$$\Rightarrow 12 + 15y - 2y = 7 \Rightarrow 12 + 13y = 7$$
$$\Rightarrow 13y = -5 \Rightarrow \boxed{y = \frac{-5}{13}}$$

Putting this value of y in equation (*ii*), we get

$$9x - 2\left(\frac{-5}{13}\right) = 7 \implies 9x + \frac{10}{13} = 7$$
$$9x = 7 - \frac{10}{13}$$
$$9x = \frac{81}{13} \implies \boxed{x = \frac{9}{13}}$$

Solve for x and y by the method of elimination: 4x - 3y = 1; 5x - 7y = -2

Sol. Given equations are

 \Rightarrow

$$4x - 3y = 1 \qquad \dots (i)$$

$$5x - 7y = -2 \qquad \dots (ii)$$

For making coefficient of y equal in both the equations multiplying equation (*i*) with 7, we get

$$7 \times (4x - 3y) = 7 \times 1$$

 $28x - 21y = 7$...(*iii*)

Multiplying equation (ii) with 3, we get

$$3 \times (5x - 7y) = 3 \times -2$$

 $15x - 21y = -6$...(*iv*)

Subtracting equation (iv) from (iii), we get

$$28x - 21y = 7$$

$$15x - 21y = -6$$

$$- + +$$

$$13x = 13$$

$$x = 1$$

when x = 1, equation (*i*) becomes

$$4 \times 1 - 3y = 1$$

$$\Rightarrow \qquad -3y = -3 \Rightarrow y = 1$$

$$\therefore x = 1, y = 1$$

Solve the following pair of linear equations for x and y:

2(ax - by) + (a + 4b) = 0; 2(bx + ay) + (b - 4a) = 0Sol. Consider equations:

$$2(ax - by) + (a + 4b) = 0$$

and
$$2(bx + ay) + (b - 4a) = 0$$

$$\Rightarrow \qquad 2ax - 2by = -a - 4b \qquad \dots(i)$$

and
$$2bx + 2ay = 4a - b \qquad \dots(ii)$$

Multiply (i) by a and (ii) by b and adding, we get
$$2(a^2 + b^2)x = (-a - 4b)a + b(4a - b)$$
$$= -a^2 - 4ab + 4ab - b^2$$
$$= -(a^2 + b^2)$$
$$\Rightarrow \qquad x = -\frac{1}{2}$$

Substituting in (i), we get -a - 2by = -a - 4b $\Rightarrow -2by = -4b \Rightarrow y = 2$ \therefore solution is $x = -\frac{1}{2}$ and y = 2.

Home assignment

• Ex. 3.34Q. 1 & AHA

- 1. Solve the system of equation 2x + y = -4 and 5x 3y = 1 by the method of elimination.
- 2. Solve the system of equation 2x + 3y = 11, x + 2y = 7 by the method of elimination..

THANKING YOU ODM EDUCATIONAL GROUP