

QUADRATIC EQUATIONS

PPT2

SUBJECT: MATHEMATICS

CHAPTER NUMBER: 04

CHAPTER NAME: QUADRATIC EQUATIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Quadratic Equation

When we equate a quadratic polynomial to a constant, we get a quadratic equation.

Any equation of the form $p(x)=ax^2+bx+c$, where p(x) is a polynomial of degree 2 and c is a constant, is a quadratic equation.

The standard form of a Quadratic Equation

The standard form of a quadratic equation is $ax^2+bx+c=0$, where a,b and c are real numbers and $a\neq 0$.

'a' is the coefficient of x^2 . It is called the quadratic coefficient. 'b' is the coefficient of x. It is called the linear coefficient. 'c' is the constant term.

LEARNING OUTCOME

- 1.Students will be able to find roots of a quadratic equation by factorization
- 2. Students will be able to represent situations in the form of Quadratic Equations.

Roots of a Quadratic equation

The values of x for which a quadratic equation is satisfied are called the roots of the quadratic equation.

If α is a root of the quadratic equation $ax^2 +bx +c=0$, then $a\alpha^2+b\alpha+c=0$.

: https://youtu.be/UtReXKgmQ10(4.11)

Solving a Quadratic Equation by Factorization method

• Consider a quadratic equation $2x^2-5x+3=0$

$$\Rightarrow 2x^2 - 2x - 3x + 3 = 0$$

This step is splitting the middle term

We split the middle term by finding two numbers (-2 and -3) such that their sum is equal to the coefficient of x and their product is equal to the product of the coefficient of x^2 and the constant.

$$(-2) + (-3) = (-5)$$

And
$$(-2) \times (-3) = 6$$

$$\Rightarrow$$
 2 x ²-2x -3x +3=0

$$\Rightarrow 2x (x - 1) - 3(x - 1) = 0$$

$$\Rightarrow$$
 $(x-1)(2 x-3)=0$

In this step, we have expressed the quadratic polynomial as a product of its factors.

Thus, x = 1 and x = 3/2 are the roots of the given quadratic equation.

This method of solving a quadratic equation is called the factorization method.

: Find the roots of the quadratic equation 6 $x^2 - x - 2 = 0$.

Solution : We have 6 $x^2 - x - 2$

$$= 6 x^2 + 3 x - 4 x - 2$$

$$= 3 x (2 x + 1) - 2 (2 x + 1)$$

$$= (3 x - 2)(2 x + 1)$$

The roots of 6 $x^2 - x - 2 = 0$ are the values of x for which (3 x - 2)(2 x + 1) = 0

Therefore, 3x - 2 = 0 or 2x + 1 = 0, i.e., x = 2/3 or x = -1/2 Therefore, the roots of

$$6x^2 - x - 2 = 0$$
 are $2/3$ and $-1/2$

We verify the roots, by checking that 2/3 and -1/2 satisfy $6x^2 - x - 2 = 0$

Find the roots of the quadratic equation $3x^2 - 2\sqrt{6}x + 2 = 0$.

Solution :
$$3x^2 - 2\sqrt{6}x + 2$$

$$= 3x^2 - \sqrt{6} x - \sqrt{6} x + 2$$

$$= \sqrt{3}x(\sqrt{3} \ x - \sqrt{2}) - \sqrt{2}(\sqrt{3} \ x - \sqrt{2})$$

$$=(\sqrt{3} x - \sqrt{2})(\sqrt{3} x - \sqrt{2})$$

So, the roots of the equation are the values of x for which

$$(\sqrt{3} x - \sqrt{2})(\sqrt{3} x - \sqrt{2}) = 0$$

Now,
$$\sqrt{3} x - \sqrt{2} = 0$$
 for $x = \sqrt{\frac{2}{3}}$.

So, this root is repeated twice, one for each repeated factor $\sqrt{3} x - \sqrt{2}$.

Therefore, the roots of
$$3x^2 - 2\sqrt{6}x + 2 = 0$$
 are $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$.

. Find the roots of the following quadratic equations by factorization

(ii)
$$2 x^2 + x - 6 = 0$$

$$(v) 100 x^2 - 20 x + 1 = 0$$

$$2x^{2} + x - 6 = 0 \Rightarrow 2x^{2} + 4x - 3x - 6 = 0$$

$$\Rightarrow 2x(x+2) - 3(x+2) = 0 \Rightarrow (x+2)(2x-3) = 0$$

If x + 2 = 0 then x = -2

If
$$2x - 3 = 0$$
 then $x = \frac{3}{2}$

Hence, the roots of the equation $2x^2 + x - 6 = 0$ are -2 and $\frac{3}{2}$.

(v)
$$100x^2 - 20x + 1 = 0 \implies 100x^2 - 10x - 10x + 1 = 0$$

 $\Rightarrow 10x(10x - 1) - 1(10x - 1) = 0 \implies (10x - 1)(10x - 1) = 0$
 $\Rightarrow (10x - 1)^2 = 0 \implies x = \frac{1}{10}$
Hence, both the roots of equation $100x^2 - 20x + 1 = 0$ are $\frac{1}{10}$, $\frac{1}{10}$.

Solve for x:
$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
 $(a \neq 0, b \neq 0, x \neq 0)$

SOLUTION.

We have,
$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x} \implies \frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

$$\Rightarrow \frac{x-(a+b+x)}{x(a+b+x)} = \frac{a+b}{ab}$$

$$\Rightarrow \frac{-(a+b)}{x(a+b+x)} = \frac{(a+b)}{ab}$$
(Cancelling $(a+b)$ from both sides)

$$\Rightarrow \qquad -\frac{1}{x(a+b+x)} = \frac{1}{ab} \qquad \Rightarrow \qquad -x(a+b+x) = ab$$

$$\Rightarrow \qquad x(a+b+x)+ab=0 \qquad \Rightarrow \qquad x^2+ax+bx+ab=0$$

$$\Rightarrow x(x+a) + b(x+a) = 0 \Rightarrow (x+a)(x+b) = 0$$

$$\Rightarrow \text{Either} x + a = 0 \Rightarrow x = -a$$

or
$$x + b = 0$$
 \Rightarrow $x = -b$

Hence,
$$x = -a$$
 and $x = -b$

HOME ASSIGNMENT Ex. 4.2 Q. No 1 to Q2

AHA

- 1. If 1 is a root of the equations $ay^2 + ay + 3 = 0$ and $y^2 + y + b = 0$, then find the value of ab.
- 2. If x = -1/2, is a solution of the quadratic equation $3x^2 + 2kx 3 = 0$, find the value of k.

THANKING YOU ODM EDUCATIONAL GROUP