

QUADRATIC EQUATIONS

PPT8

SUBJECT: MATHEMATICS

CHAPTER NUMBER: 04

CHAPTER NAME: QUADRATIC EQUATIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org

Email: info@odmps.org

Toll Free: **1800 120 2316**

Sishu Vihar, Infocity Road, Patia, Bhubaneswar-751024

PREVIOUS KNOWLEDGE TEST

1.The standard form of a Quadratic Equation

The standard form of a quadratic equation is $ax^2+bx+c=0$, where a,b and c are real numbers and $a\neq 0$. 'a' is the coefficient of x^2 . It is called the quadratic coefficient. 'b' is the coefficient of x. It is called the linear coefficient. 'c' is the constant term..

- 2.For a quadratic equation of the form $ax^2+bx+c=0$, the expression b^2-4ac is called the discriminant, (denoted by D), of the quadratic equation.
- 3. The discriminant determines the nature of roots of the quadratic equation based on the coefficients of the quadratic equation.

4. Nature of Roots

Based on the value of the discriminant, $D=b^2-4ac$, the roots of a quadratic equation can be of three types.

- Case 1: If D>0, the equation has two distinct real roots.
- Case 2: If D=0, the equation has two equal real roots.
- Case 3: If D<0, the equation has no real roots.

LEARNING OUTCOME

- 1. . Students will be able to solve a Quadratic Equations by quadratic formula
- 2. Students will be able to solve real life situations (by forming Quadratic Equations)
- 3. Students will be able to find the nature of roots of quadratic equations by quadratic formula.
- 4. .Students will be able to find solution of quadratic equation by completing the square method.

• Short Tricks to solve quadratic equations and word sums.

https://youtu.be/GxUVVOb3ywE)

- How to solve quadratic equations in completing the square method
- https://youtu.be/Eob9SOf5DzQ

1.If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the value of k.

1.If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the value of k.

Since – 5 is a root of the equation
$$2x^2 + px - 15 = 0$$

$$\therefore 2(-5)^2 + p(-5) - 15 = 0$$

$$\Rightarrow$$
 50 - 5p - 15 = 0

or
$$5p = 35$$

or
$$p = 7$$

Again
$$p(x^2 + x) + k = 0$$

or
$$7x^2 + 7x + k = 0$$
 has equal roots

$$a = 7$$
, b= 7,c= k

$$\therefore$$
 D = 0

i.e.,
$$b^2 - 4ac = 0$$
 or $49 - 4 \times 7k = 0$

$$\Rightarrow k = \frac{49}{28} = \frac{7}{4}.$$

2.Using quadratic formula solve the following quadratic equation: $p^2x^2 + (p^2 - q^2)x - q^2 = 0$

2.Using quadratic formula solve the following quadratic equation: $p^2x^2 + (p^2 - q^2)x - q^2 = 0$

Solution:

We have
$$p^2x^2 + (p^2 - q^2)x - q^2 = 0$$

Comparing this equation with $ax^2 + bx + c = 0$, we have

$$a = p^2$$
, $b = p^2 - q^2$ and $c = -q^2$

∴ D =
$$b^2$$
 – 4ac

$$\Rightarrow (p^2 - q^2)^2 - 4 \times p^2 \times (-q^2)$$

$$\Rightarrow (p^2 - q^2)^2 + 4 p^2 q^2$$

$$\Rightarrow (p^2 + q^2)^2 > 0$$

So, the given equation has real roots given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(p^2 - q^2) + (p^2 + q^2)}{2p^2} = \frac{2q^2}{2p^2} = \frac{q^2}{p^2}$$

and
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(p^2 - q^2) - (p^2 + q^2)}{2p^2} = \frac{-2p^2}{2p^2} = -1$$

Hence, roots are $\frac{q^2}{p^2}$ and -1.

3.If the roots of the quadratic equation $(a - b) x^2 + (b - c) x + (c - a) = 0$ are equal, prove that 2a = b + c..

3.If the roots of the quadratic equation $(a - b) x^2 + (b - c) x + (c - a) = \frac{\text{EDUCATION}}{\text{Change}}$ 0 are equal, prove that 2a = b + c..

Since the equation $(a - b) x^2 + (b - c) x + (c - a) = 0$ has equal roots, therefore discriminant

$$D = (b - c)^2 - 4(a - b)(c - a) = 0$$

$$\Rightarrow$$
 b² + c² - 2bc - 4(ac - a² - bc + ab) = 0

$$\Rightarrow$$
 b² + c² - 2bc - 4ac + 4a² + 4bc - 4ab = 0

$$\Rightarrow$$
 4a²+ b² + c² - 4ab + 2bc - 4ac = 0

$$\Rightarrow$$
 (2a) 2 + (-b) 2 + (-c) 2 + 2(2a) (-b) + 2(-b) (-c) + 2(-c) 2a = 0

$$\Rightarrow$$
 (2a) - + (-b) - + (-c) - + 2(2a) (-b) + 2(-b) (-c) + 2(-c) 2a -

$$\Rightarrow$$
 (2a - b - c)² = 0

$$\Rightarrow$$
 2a - b - c = 0

$$\Rightarrow$$
 2a = b + c.

Hence Proved

4.If the equation $(1 + m^2)x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots, show that $c^2 = a^2 (1 + m^2)$.

4.If the equation $(1 + m^2)x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots, show that $c^2 = a^2 (1 + m^2)$.

The given equation is
$$(1 + m^2) x^2 + (2mc) x + (c^2 - a^2) = 0$$

Here, A = 1 +
$$m^2$$
, B = 2mc and C = $c^2 - a^2$

Since the given equation has equal roots, therefore D = 0

$$\Rightarrow$$
 B² – 4AC = 0.

$$\Rightarrow$$
 (2mc) ² - 4(1 + m²) (c² - a²) = 0

$$\Rightarrow$$
 4m²c² - 4(c² - a² + m²c² - m²a²) = 0

$$\Rightarrow$$
 m²c² - c² + a² - m²c² + m²a² = 0. [Dividing throughout by 4]

$$\Rightarrow$$
 -c² + a² (1 + m²) = 0

$$\Rightarrow$$
 c² = a² (1 + m²).

Hence Proved

5. The difference of two natural numbers is 5 and the difference of their reciprocals is 1/10. Find the numbers.

5. The difference of two natural numbers is 5 and the difference of their reciprocals is 1/10. Find the numbers.

Let the two natural numbers be x and y such that x > y.

According to the question,

Difference of numbers, $x - y = 5 \Rightarrow x = 5 + y \dots (i)$

Difference of the reciprocals

$$\frac{1}{y} - \frac{1}{x} = \frac{1}{10}$$
Putting the value of (i) in (ii)
$$\frac{1}{y} - \frac{1}{5+y} = \frac{1}{10}$$

$$\Rightarrow 50 = 5y + y^{2}$$

$$\Rightarrow y^{2} + 5y - 50 = 0$$

$$\Rightarrow y^{2} + 10y - 5y - 50 = 0$$

$$\Rightarrow (y - 5) (y + 10) = 0$$
...(ii)
$$\Rightarrow \frac{5+y-y}{y(5+y)} = \frac{1}{10}$$

$$\Rightarrow y^{2} + 5y - 50 = 0$$

$$\Rightarrow y(y + 10) - 5(y + 10) = 0$$

∴ y is a natural number.

Putting the value of y in (i), we have

$$\Rightarrow$$
 x = 5 + 5

$$\Rightarrow$$
 x = 10

The required numbers are 10 and 5.

HOME ASSIGNMENT Ex. 4.1.Q1 to 10(EXEMPLAR) AHA

- 1. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?
- 2. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m . Find its length and breadth.

THANKING YOU ODM EDUCATIONAL GROUP