

ARITHMETIC PROGRESSOINS PPT-4

SUBJECT : MATHEMATICS CHAPTER NUMBER: 05 CHAPTER NAME : ARITHMETIC PROGRESSIONS

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

- An **arithmetic progression** is a list of numbers in which each term is obtained by adding afixed number to the preceding term except the first term.
- The general form of an arithmetic progression is given by
 a, a + d, a + 2d, a + 3d, . . . where a is the first term and d the common difference.

nth term $a_n = a + (n - 1) d$.

So, the nth term an of the AP with first term a and common difference d is given by

- a_n is also called the general term of the AP.
- nth term of an AP from the end = I (n 1) d

LEARNING OUTCOME

٠

1. Students will be able to know the sum of first n terms of an AP.

2.Students will be able to solve problems based on finding the number of terms, when sum of terms and AP are given.

Sum of first n-terms of an AP https://youtu.be/cRyeMph7tKU(12.52)

1.Find the sum of the following AP:2, 7, 12, . . ., to 10 terms.

2, 7, 12,, to 10 terms
Here,
$$a = 2, d = 7 - 2 = 5, n = 10, S_{10} = ?$$

 $\therefore S_n = \frac{n}{2} [2a + (n - 1) d]$
 $\therefore S_{10} = \frac{10}{2} [2 \times 2 + (10 - 1) 5]$
 $= 5 [4 + 45] = 5 \times 49 = 245$

2.Find the sum 34 + 32 + 30 + . . . + 10

 $34 + 32 + 30 + \dots + 10$ Here, a = 34, d = 32 - 34 = -2 $a_n = 10$ $a_n = a + (n - 1) d$ $\Rightarrow \qquad 10 = 34 + (n - 1) (-2)$ $\Rightarrow \qquad 10 - 34 = (n - 1) (-2)$ $\Rightarrow \qquad \frac{-24}{-2} = n - 1 \Rightarrow n - 1 = 12$ $\Rightarrow \qquad n = 12 + 1 = 13$ $\therefore \qquad S_{13} = \frac{13}{2} [34 + 10]$ $= \frac{13}{2} \times 44 = 13 \times 22 = 286$

3.In an AP: given a = 5, d = 3, a_n = 50, find n.

$$a = 5, d = 3, a_n = 50$$

$$a_n = 50$$

$$\Rightarrow a + (n - 1) d = 50$$

$$\Rightarrow 5 + (n - 1) 3 = 50$$

$$\Rightarrow (n - 1) 3 = 50 - 5$$

$$\Rightarrow (n - 1) 3 = 45$$

$$\Rightarrow n - 1 = \frac{45}{3} = 15 \Rightarrow n = 16$$

4. given $a_3 = 15$, $S_{10} = 125$, find d and a_{10} .

4. given $a_3 = 15$, $S_{10} = 125$, find d and a_{10} .

Given,
$$a_3 = 15$$
, $S_{10} = 125$
 $a_3 = 15$
 $\Rightarrow a + 2d = 15$
 $\Rightarrow a = 15 - 2d$
We have, $S_n = \frac{n}{2}[2a + (n - 1)d]$
 $S_{10} = \frac{10}{2}[2a + (n - 1)d]$
 $= 5 [2 (15 - 2d) + (10 - 1) \times d]$
 $= 5 [30 - 4d + 9d]$
 $\Rightarrow 125 = 5 (30 + 5d)$
 $\Rightarrow \frac{125}{5} = 30 + 5d$
 $\Rightarrow 25 - 30 = 5d$
 $\Rightarrow -5 = 5d$
 $\Rightarrow -5 = 5d$
 $\Rightarrow d = -1$
 $a_{10} = a + 9d = 15 - 2d + 9d$
 $= 15 + 7d = 15 + 7 \times (-1)$
 $= 15 - 7 = 8$

5. given $a_n = 4$, d = 2, Sn = -14, find n and a.

5. given $a_n = 4$, d = 2, Sn = -14, find n and a.

$a_n = 4, d = 2, S_n = -14$
$S_n = \frac{n}{2}[a + a_n]$
\Rightarrow $-14 = \frac{n}{2}[a+4]$
\Rightarrow $-28 = na + 4n$
$\Rightarrow \frac{-28-4n}{n} = a$
$a_n = 4$
$\Rightarrow a + (n-1)d = 4$
$\Rightarrow \frac{-4n-28}{n} + (n-1)2 = 4$
$\Rightarrow -4n-28+2n^2-2n=4n$
$\Rightarrow 2n^2 - 10n - 28 = 0 \text{ or } n^2 - 5n - 14 = 0$
or $n^2 - 7n + 2n - 14 = 0$
$\Rightarrow n (n-7) + 2 (n-7) = 0$
$\Rightarrow (n+2) (n-7) = 0$
\Rightarrow Either $n + 2 = 0$ or $n - 7 = 0$
$\Rightarrow n = -2$ or $n = 7$, $n = -2$ is rejected
$\therefore \qquad a = \frac{-28-4n}{n} = \frac{-28-4\times7}{7}$
$= \frac{-28 - 28}{7} = \frac{-56}{7} = -8$

6.Find the sum of first 22 terms of an AP in which d = 7 and 22nd term is 149.

Find the sum of first 22 terms of an AP in which d = 7 and 22nd term is 149.

Sol. Given, d = 7, $a_{22} = 149$ $a_{22} = a + 21d = 149$ $\Rightarrow a + 21 \times 7 = 149$ $\Rightarrow a + 147 = 149$ $\Rightarrow a = 149 - 147 = 2$ $\therefore \qquad S_{22} = \frac{22}{2}[a + a_{22}]$ = 11 [2 + 149] $= 11 \times 151 = 1661$

7. How many terms of the AP : 9, 17, 25, ... must be taken to give a sum of 636?.

How many terms of AP: 9, 17, 25, must be taken to give a sum of 636?

Sol. Given, a = 9, d = 17 - 9 = 8,

	$S_n = 636$
	$S_n = \frac{n}{2} [2a + (n-1)d]$
\Rightarrow	$636 = \frac{n}{2} [2 \times 9 + (n-1) 8]$
\Rightarrow	$636 \times 2 = n [18 + 8n - 8]$
\Rightarrow	$636 \times 2 = n (10 + 8n)$
\Rightarrow	$636 \times 2 = 2n(5+4n)$
\Rightarrow	$\frac{636 \times 2}{2} = 5n + 4n^2$
\Rightarrow	$4n^2 + 5n - 636 = 0$
\Rightarrow	$4n^2 + 53n - 48n - 636 = 0$
\Rightarrow	4n (n + 53) - 48 (n + 53) = 0
\Rightarrow	(4n-48)(n+53) = 0
\Rightarrow	Either $4n = 48$ or $n + 53 = 0$
\Rightarrow	$n = \frac{48}{4}$ or $n = -53$ (rejected)
\Rightarrow	n = 12
Henc	e $n = 12$

HOME ASSIGNMENT Ex. 5.3 Q. No 1 to Q10

AHA

1. How many terms of the AP : 24, 21, 18, ... must be taken so that their sum is 78?

2. The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of the numbers of the houses following it. Find this value of x.

THANKING YOU ODM EDUCATIONAL GROUP

