

INTRODUCTION TO TRIGONOMETRY

PPT-2

SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : INTRODUCTION TO TRIGONOMETRY

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST

Trigonometric Ratios

Let $\triangle ABC$ be a triangle right angled at B. Then the trigonometric ratios of the angle A in right

 ΔABC are defined as follows.

LEARNING OUTCOME

1. Students will be able to know some ratios of the sides of a right triangle with respect to its acute angles.

2. Students will be able to know the relations between t- ratios.

3. Students will be able to apply and analyze trigonometry ratios in solving real life problems.

Trigonometric Ratios;

https://youtu.be/FTVJzHRRBfl (12.05)

1. Given 15 cot A = 8, find sin A and sec A

1. Given 15 cot A = 8, find sin A and sec A

$$15 \cot A = 8 \Rightarrow \cot A = \frac{8}{15} \Rightarrow \frac{AB}{BC} = \frac{8}{15}$$
Let $AB = 8k$ and $BC = 15k$
In right angled $\triangle ABC$,
 $AC^2 = AB^2 + BC^2$ [Pythagoras theorem]
 $= (8k)^2 + (15k)^2 = 64k^2 + 225k^2 = 289k^2$
 $\Rightarrow AC = \sqrt{289k^2} = 17k$
So, $\sin A = \frac{BC}{AC} = \frac{15k}{17k} = \frac{15}{17}$
and $\sec A = \frac{AC}{AB} = \frac{17k}{8k} = \frac{17}{8}$

2. If $\csc \theta = 5/3$, then what is the value of $\cos \theta + \tan \theta$

~

 $\overline{}$

2. If $\csc \theta = 5/3$, then what is the value of $\cos \theta + \tan \theta$

$$cosec \theta = \frac{5}{3} \Rightarrow \frac{h}{\rho} = \frac{5}{3} \Rightarrow \frac{Ac}{AB} = \frac{5}{3}$$
In right angled $\triangle ABC$, $\angle B = 90^\circ$, $\det Ac = 5K$, $AB = 3K$
So, $AC^2 = AB^2 + BC^2$ [By Pythagoras theorem]
 $\Rightarrow (5k)^2 = (3k)^2 + BC^2$
 $\Rightarrow BC^2 = 25k^2 - 9k^2$
 $\Rightarrow BC^2 = 16k^2 \Rightarrow BC = 4k$
So, $\cos \theta = \frac{4}{5}$ and $\tan \theta = \frac{3}{4}$
Now, $\cos \theta + \tan \theta = \frac{4}{5} + \frac{3}{4} = \frac{16 + 15}{20} = \frac{31}{20}$

3. If $\cot \theta = 7 / 8$ evaluate : (i) $(1 + \sin \theta) (1 - \sin \theta) / (1 + \cos \theta) (1 - \cos \theta)$ (ii) $\cot^2 \theta$

3. If $\cot \theta = 7 / 8$ evaluate : (i) $(1 + \sin \theta)(1 - \sin \theta) / (1 + \cos \theta)(1 - \cos \theta)$ (ii) $\cot^2 \theta$

4. If 3 cot A = 4, check whether $\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$ or not.

С

Зk

 \square_B

4. If 3 cot A = 4, check whether
$$\frac{1-\tan^2 A}{1+\tan^2 A} = \cos^2 A - \sin^2 A$$
 or not.

Solution. In right
$$\triangle ABC$$
, $\angle B = 90^{\circ}$.
Given, $3 \cot A = 4 \implies \cot A = \frac{4}{3} = \frac{AB}{BC}$. If $AB = 4k$, then $BC = 3k$
By Pythagoras theorem,
 $AC^2 = AB^2 + BC^2 = (4k)^2 + (3k)^2 = 25k^2$
 $\therefore AC = 5k$
Clearly, $\tan A = \frac{BC}{AB} = \frac{3k}{4k} = \frac{3}{4}$, $\sin A = \frac{BC}{AC} = \frac{3k}{5k} = \frac{3}{5}$
and $\cos A = \frac{AB}{AC} = \frac{4k}{5k} = \frac{4}{5}$
Now, $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{1 - \left(\frac{3}{4}\right)^2}{1 + \left(\frac{3}{4}\right)^2} = \frac{1 - \frac{9}{16}}{1 + \frac{9}{16}} = \frac{16 - 9}{16 + 9} = \frac{7}{25}$
Also, $\cos^2 A - \sin^2 A = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}$
Hence, $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$.

5. Δ RPQ is a right angled at Q. If PQ = 5 cm and RQ = 10 cm, find: 1.sin²P 2.cos²R and tan R 3.sin P x cos P 4.sin²P - cos²P

5. Δ RPQ is a right angled at Q. If PQ = 5 cm and RQ = 10 cm, find: 1.sin²P 2.cos²R and tan R 3.sin P x cos P 4.sin²P - cos²P

In right angled $\triangle RPQ$, $\angle Q = 90^{\circ}$ $PR^2 = 10^2 + 5^2$ So, $PR^2 = 125$ $PR = 5\sqrt{5} cm$ $\sin^2 P = \left(\frac{10}{5\sqrt{5}}\right)^2 = \frac{4}{5}$ 5√5 cm (i) 10 cm $\cos^2 R = \left(\frac{10}{5\sqrt{5}}\right)^2 = \frac{4}{5}$ and $\tan R = \frac{5}{10} = \frac{1}{2}$ (*ii*) 5 cm Q $\sin P \times \cos P = \frac{10}{5\sqrt{5}} \times \frac{5}{5\sqrt{5}} = \frac{2}{5}$ (iii) $\sin^2 P - \cos^2 P = \left(\frac{10}{5\sqrt{5}}\right)^2 - \left(\frac{5}{5\sqrt{5}}\right)^2 = \frac{4}{5} - \frac{1}{5} = \frac{3}{5}$ (iv)

P

HOME ASSIGNMENT Ex. 8.1 Q. No 4 to Q8

AHA

1. In \triangle OPQ, right-angled at P, OP = 7 cm and OQ – PQ = 1 cm. Determine the values of sin Q and cos Q..

2. Consider \triangle ACB, right-angled at C, in which AB = 29 units, BC = 21 units and \angle ABC = θ Determine the values of (i) $\cos^2 \theta + \sin^2 \theta$, (ii) $\sin^2 \theta - \cos^2 \theta$.

THANKING YOU ODM EDUCATIONAL GROUP