

INTRODUCTION TO TRIGONOMETRY

PPT-5

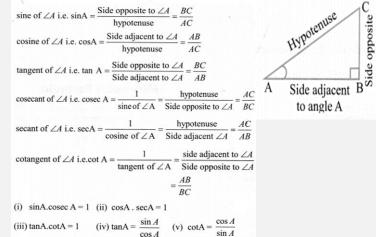
SUBJECT : MATHEMATICS CHAPTER NUMBER: 08 CHAPTER NAME : INTRODUCTION TO TRIGONOMETRY

CHANGING YOUR TOMORROW

Website: www.odmegroup.org Email: info@odmps.org

Toll Free: **1800 120 2316** Sishu Vihar, Infocity Road, Patia, Bhubaneswar- 751024

PREVIOUS KNOWLEDGE TEST


Trigonometric Ratios

Trigonometric ratios of an acute angle in a right triangle express the relationship between the angle and the length of its sides.

Let $\triangle ABC$ be a triangle right angled at B. Then the trigonometric ratios of the angle A in right

angle

ΔABC are defined as follows.

The values of the trigonometric ratios of an angle do not vary with the lengths of the sides of the triangle, if the angle remains same.

	onome ne Spe				
<i>ZA</i>	0.0	300	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cosec A	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cot A	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

LEARNING OUTCOME

1. Students will be able to know the trigonometric ratios of some specific angles.

2. Students will be able to know the relations between t- ratios.

3. Students will be able to apply and analyze trigonometric ratios of some specific angles in solving real life problems.

Problem solving on Trigonometric Ratio of some specific angles; https://youtu.be/qv9e4z3wP5E (9.50)

1. If sin (A + B) = 1 and tan (A – B) = $1/\sqrt{3}$, find the value of;(I)tan A + cot B (II)sec A – cosec B

	$\sin (\mathbf{A} + \mathbf{B}) = 1$	(Given)			
⇒	$\sin (\mathbf{A} + \mathbf{B}) = \sin 90^{\circ}$	$(As \sin 90^\circ = 1)$			
⇒	$A + B = 90^{\circ}$	(i)			
Also	$\tan (A - B) = \frac{1}{\sqrt{3}}$	e (Given)			
	$\tan (A - B) = \tan 30^{\circ}$	(As $\tan 30^\circ = \frac{1}{\sqrt{3}}$)			
⇒	$A - B = 30^{\circ}$	(<i>ü</i>)			
Solving (i) and (ii) for A and B, we get $A = 60^{\circ}$ and $B = 30^{\circ}$					
(i) $\tan A + \cot B = \tan 60^\circ + \cot 30^\circ = \sqrt{3} + \sqrt{3} = 2\sqrt{3}$					
(<i>ii</i>) sec A – cosec B = sec 60° – cosec 30° = 2 – 2 = 0					

2. If tan (A + B) = $\sqrt{3}$ and tan (A - B) =1 / $\sqrt{3}$; 0° < A + B ≤ 90°; A > B, find A and B.

2 .If tan (A + B) = $\sqrt{3}$ and tan (A – B) =1 / $\sqrt{3}$; 0° < A + B ≤ 90°; A > B, find A and B.

3.Given that cos(A - B) = cos A.cos B + sinA.sinB, find the value of cos 15° in two ways.1.Taking A = 60°, B = 45° and 2.Taking A = 45°, B = 30°

3.Given that cos(A - B) = cos A.cos B + sinA.sinB, find the value of cos 15° in two ways.1.Taking A = 60°, B = 45° and 2.Taking A = 45°, B = 30°

(i) By taking A = 60° and B = 45°

$$\cos 15^\circ = \cos(60^\circ - 45^\circ)$$

 $= \cos 60^\circ \cos 45^\circ + \sin 60^\circ \sin 45^\circ$
 $= \frac{1}{2} \times \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} = \frac{1+\sqrt{3}}{2\sqrt{2}}$

(*ii*) By taking A = 45° and B = 30°

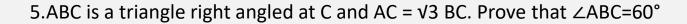
$$\cos 15^\circ = \cos (45^\circ - 30^\circ)$$

$$= \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ$$

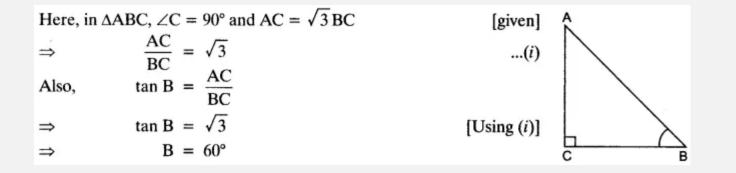
$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

4. If sin A = cos A, find the value of $2\tan^2 A + \sin^2 A - 1$.

• • •


4. If sin A = cos A, find the value of $2\tan^2 A + \sin^2 A - 1$.

• •



5.ABC is a triangle right angled at C and AC = $\sqrt{3}$ BC. Prove that $\angle ABC=60^{\circ}$

• •

• •

HOME ASSIGNMENT Ex. 8.2 Q. No 2 to 4

AHA

1.A rhombus of side 10cm has two angles 60° each. Find the lengths of diagonals of the rhombus..

1

THANKING YOU ODM EDUCATIONAL GROUP