QUESTION BANK

EXERCISE - 1

- Q.1 Does wind possess kinetic for potential energy?
- Q.2 What is a turbine ?
- Q.3 Name the device which converts solar energy directly into electricity.
- Q.4 What do you mean by hydro energy?
- Q.5 What do you mean by tidal energy?
- Q.6 Why it is not possible to use the energy which is consumed?
- Q.7 What energy transformation takes place when we light a candle and drop a metal plate from a certain height?
- Q.8 What are fossil fuels?
- Q.9 What was the most common source of heat energy in ancient times?
- Q.10 Which fuel meets the growing demand of energy nowadays and the past?
- Q.11 What made us to look for alternative source of energy?
- Q.12 What are main disadvantages of using fossil fuels and how can we minimize it?
- Q.13 What causes acid rain?
- Q.14 What energy transformation is done by a dynamo?
- Q.15 List out the different power plants from which we get electrical energy?
- Q.16 Why most of the thermal power plants are set near coal or oil mines?
- Q.17 Why hydro power plants are associated with dams?
- Q.18 Give the reason for the coining of the word thermal power plant?
- Q.19 Give few example for how our ancestors used the energy possessed by the wind and water.
- Q.20 Write the working of a hydro power plant with a neat diagram?
- Q.21 What are the advantages and disadvantages of using energy from water?
- Q.22 What is bio-mass and write few examples of bio mass?
- Q.23 How is charcoal formed and what are the advantages of using charcoal as a source of energy?
- Q.24 What is the composition of bio-gas and the matter rich in the slurry left behind in the bio-gas plant?
- Q.25 What is the major disadvantage of bio-mass and how can it be overcome?
- Q.26 How do nuclear energy and wind energy differ from each other and also write a similarity between them.
- Q.27 What do you mean by backup facility and where do you require it?
- Q.28 There is nuclear reactor of power 300MW and a wind mill farm constructed in an area of 10 hectares. Calculate for how long the windmill farm should work continuously to give energy equal to the energy produced by the reactor if the reactor doesn't function for one day?
- Q.29 In a day time a nuclear reactor produces 3600×10^6 J of energy. Calculate the time taken by a wind energy farm of area 4 hectares to produce that much of energy?
- Q.30 What is the major source of energy for the sun?
- Q.31 What substance functions as the fuel for the sun?
- Q.32 For how long time our Sun will tend to supply energy from it?
- Q.33 Define solar constant and give its value on the upper atmosphere and on the lower atmosphere?
- Q.34 Draw the schematic picture a solar cooker?
- Q.35 How do you classify the solar energy devices ? and explain.
- Q.36 What energy transformation takes place in the solar cooker?
- **Q.37** Write the different parts of a box type solar cooker.

- Q.38 Explain the working of a solar cooker.
- Q.39 What is the role of a glass sheet and black coated surface of a box type solar cooker?
- **Q.40** Which type of solar spectrum is trapped in the solar cooker?
- Q.41 To achieve higher temperature what is done in some solar cookers?
- Q.42 What is a solar cell?
- Q.43 What are the advantages and disadvantages of a solar cell?
- Q.44 What energy transformation takes place in a solar cell?
- Q.45 What factors make a solar cell very expensive?
- Q.46 What are the uses of solar cells?
- Q.47 What is a solar panel?
- Q.48 What is the cause for the tides on the ocean? (or) how are tides formed?
- Q.49 How do you harness tidal energy?
- Q.50 How wave energy is an indirect form of solar energy?

EXERCISE - 2

FILL IN THE BLANKS :

- Q.1 Many of the sources ultimately derive their energy from the.....
- **Q.2** Solar constant = \dots
- Q.3 A device that utilises solar energy for cooking purposes is called a
- Q.4 A solar cell is a device which converts solar energy directly into
- Q.5 The energy possesses by wind is called
- Q.6 The flowing water possesses energy
- Q.7 Oceans covers about of the earth's surface and are the source of water on the earth. Because of the large mass of water in oceans and high of water, oceans at as store house of
- Q.8 Electricity generated from sea waves is
- **Q.9** The internal heat of an earth is known as energy.
- Q.10 is the remaining part of the sugarcane from which juice has been extracted.
- Q.11 Bio-gas is a mixture of, carbon dioxide, and
- Q.12 When a complex material is heated strongly in the absence of air, then it decomposes to the simplest substance. This process is called
- Q.13 The material obtained from the bodies of plants and animals is called
- Q.14 The decomposition, which takes place in the absence of oxygen by anaerobic bacteria, is called
- Q.15 Type of radiation emitted by a hot electric iron

TRUE-FALSE STATEMENTS –

- Q.16 Our energy requirements increase with our standard of living.
- Q.17 In order to fulfil our energy requirements, we try to improve the efficiency of energy usage and also try and exploit new sources of energy.
- Q.18 The main constituent of biogas is not methane.
- Q.19 Black colour is a very good absorber of heat and good reflector.
- Q.20 The use of geothermal energy cause pollution.
- Q.21 Deep drilling in the earth to obtain geothermal energy is very difficult.
- Q.22 Charcoal is a better fuel than wood and coal.

- Q.23 Bio-gas is a better fuel than animal dung-cakes.
- Q.24 The sun-rays fall on the equatorial region more intensively than any other part of the earth.
- **Q.25** The calorific value of methane is less than that of butane.

		EX	ERCISE - 3				
Q.1	Most of the energy	we use originally came fro	om—				
	(A) the sun	(B) the air	(C) the soil	(D) the oceans			
Q.2	Electrical energy c	an be produced from –					
		rgy (B) chemical energy	(C) radiant energy	(D) All of the above			
Q.3	Coal, petroleum, na	atural gas, and propane are	fossil fuels. They are ca	lled fossil fuels because:			
	(A) they are burned	(A) they are burned to release energy and they cause air pollution					
	(B) they were forme	d from the buried remains c	of plants and tiny animals t	hat lived hundred of millions of years ago			
	(C) they are nonren	ewable and will run out	(D) they are mixed wi	ith fossils to provide energy			
Q.4	Gasoline is produce	d by refining which fossil	fuel?				
	(A) natural gas	(B) coal	(C) petroleum	(D) propane			
Q.5	Propane is used ins	tead of natural gas on man	y farms and in rural area	s. Why is propane often used instead of			
	natural gas?						
	(A) it's safer	(B) it's portable	(C) it's cleaner	(D) it's cheaper			
Q.6	What sector of the	Indian economy consume	s most of the nation's pet	roleum?			
	(A) residential	(B) commercial	(C) industrial	(D) transportation			
Q.7	Natural gas is trans	ported mainly by					
	(A) pipelines	(B) trucks	(C) barges	(D) all three equally			
Q.8	Global warming fo	cuses on an increase in the	level of which gas in the	atmosphere?			
	(A) ozone	(B) sulfur dioxide	(C) carbon dioxide	(D) nitrous oxide			
Q.9	Solar, biomass, ge	othermal, wind, and hydr	ropower energy are all r	renewable sources of energy. They are			
	called renewable b	ecause they –					
	(A) are clean and f	ree to use	(B) can be converted	directly into heat and electricity			
	(C) can be replenis	hed by nature in a short pe	eriod of time				
	(D) do not produce	air pollution					
Q.10	Today, which renew	vable energy source provi	des the India with the mo	ost energy?			
	(A) wind	(B) solar	(C) geothermal	(D) hydropower			
Q.11	How much of the e	nergy in burning coal reac	hes the consumer as elec	etricity-			
	(A) 1/3 (one-third)	(B) 1/2 (one-half)	(C) 3/4 (three-quarter	rs) (D) $9/10$ (nine-tenths)			
Q.12	In a nuclear power	plant, uranium atoms					
	(A) combine and give off heat energy(B) split and give off heat energy(C) burn and give off heat energy(D) split and give off electrons						
Q.13	Solar energy is proc	duced by the following rea	ction-				
	(A) Fission reaction	n (B) Fusion reaction	(C) Chemical reaction	n (D) None of the above			
Q.14	Which form of ener	rgy is contained in wind er	ergy-				
	(A) Kinetic energy	(B) Potential energy	(C) Electric energy	(D) Thermal energy			
Q.15	In biogas, which ga	s is present in maximum a					
	(A) Carbon dioxide	-	(C) Hydrogen	(D) Oxygen			
				·			

Q.16	Which one of the follo	wing is not a source of n	on-convential energy-	
	(A) Coal	(B) Solar energy	(C) Wind energy	(D) Biogas
Q.17	White energy is freely a	available in ample amou	nt of-	
	(A) Sunlight	(B) Water gas	(C) Hydrogen	(D) Wind energy
Q.18	Gobar gas is –			
	(A) foul smelling gas	(B) sweet smelling gas	(C) having high caloric	value (D) useless
Q.19	Biogas is produced from	om biomatter by-		
	(A) anaerobic fermenta	ation	(B) distructing distillation	on
	(C) fractional distillatio	n	(D) mixing petrol in bio	omatter
Q.20	L.P.G. is mostly liquifie	ed-		
	(A) hydrogen	(B) oxygen	(C) butane	(D) methane
Q.21				eleus by a factor of about –
	(A) 10^1	(B) 10^{5}	(C) 10^{10}	(D) 10^{15}
Q.22	Which of the followin	g is true for isotopes of s	pecimen of U^{235} and U^{2}	38
	(A) both contain same	number of neutrons		
		of number of proton, ele		225
	(C) both contain same	number of proton and e	lectron but U ²³⁸ contain	as three more neutrons than U^{235}
	(D) U^{238} contain three	less neutrons than U^{235}		
Q.23	Atomic nucleus contain			
	(A) electron & photon		(B) electron, proton &	neutron
	(C) electron & neutron		(D) proton & neutron	
Q.24		mass number of elemen		
	(A) m x z	(B) $m + z$	(C) m/z	(D) m - z
Q.25		erent number of protons		
	(A) Iso clinics	(B) isobars	(C) isotones	(D) isotopes
Q.26	1 amu is equivalent to			
	(A) 9.31 MeV		(C) 93.1 MeV	(D) 931 MeV
Q.27	The dependence of de	nsity [d] of nuclear matt		
	(A) d \propto A	(B) d $\propto \sqrt{A}$	(C) $d = const.$	(D) d $\propto 1/A$
Q.28	The wrong statement i	S -		
	(A) Nuclear forces are	-		very short range forces
		ease when the number of		
	•	roduced by the exchange	eofpions	
Q.29	Range of nuclear force	e is approximately -	4	15
		(B) 1.5×10^{-20} m	• /	(D) 1.4×10^{-13} m
Q.30		nucleus is equal to the n		
	· /	s (B) Protons it contains	(C) Neutrons it contain	ns (D) Nucleons it contains
Q.31	The neutron was disco			
	(A) Marie Curie	(B) Pierre Curie	(C) James Chadwick	(D) Rutherford
Q.32		le of the density of nucle	ear matter is-	
_	· / •	(B) 10^{17} kg/m ³	(C) 10^{27} kg/m ³	(D) $10^{-1} \text{ kg/m}^{-1}$
Q.33	Force between protons			
	(A) only nuclear	(B) only coulomb	(C) nuclear & coulom	b (D) coulomb & gravitational

Q.34		of 931 MeV energy is -24	_20	_27			
	· / ·	(B) 6.02×10^{-24} kg	(C) 1.66×10^{-20} kg	(D) 6.02×10^{-27} kg			
Q.35		in nuclear reactor as -					
	(A) moderator	(B) control rods	(C) coolant	(D) protective shield			
Q.36							
	(A) berillium oxide	(B) pure water	(C) heavy water	(D) graphite			
Q.37	Nuclear fission was o	•					
0.20	(A) OttoHahn and str		(C) Bethe	(D) Rutherford			
Q.38	The rest mass energy						
0.20	(A) 510 kilo eV		(C) 510 MeV				
Q.39		h a heavy nucleus splits in (D)					
0.40	(A) Fission	(B) α-decay	(C) Fusion CU^{235}	(D) Chain reaction			
Q.40			on of U . A reactor is g	generating 1000 kW of power. The rate			
	of nuclear fission in t	he reactor is - (B) 2×10^8	$(C) = 125 \dots 10^{16}$				
0.41	(A) 1000		$(C) 3.125 \times 10$	(D) 931			
Q.41	In the process of nucle						
	.,	us break into light nuclei					
		clei at normal temperatur					
		clei at high pressure and					
Q.42		iclei at high pressure and		to an array Harry marsh an array is related			
Q.42	if 1kg of ${}_{92}$ U ²³⁵ under	bes inssion 0.170 of its off	ginal mass is changed in	to energy. How much energy is released			
	$(\Lambda) 9 \times 10^{10} \text{ I}$	(B) 9×10^{11} I	(C) 9×10^{12} I	(D) 9×10^{13} I			
Q.43	(A) 9×10^{10} J (B) 9×10^{11} J (C) 9×10^{12} J (D) 9×10^{13} J 3 In nuclear power station energy of uranium is used for producing -						
Q.+J	-	(B) Mechanical energ		(D) Magnetic energy			
Q.44	• •	ir radiation energy by -	y (c) meat energy	(D) Mughene energy			
Q .11	(A) Fission process	in radiation energy by	(B) Fusion process				
	(C) Disintegration pr	ocess	(D) Photo-electric eff	ect			
Q.45		liberated in nuclear react					
C		ial energy into kinetic en					
	(B) Kinetic energy of						
	(C) Energy equivaler	nt to mass lost	(D) None of these				
Q.46	Atom bomb consists	s of pieces of $_{92}U^{235}$ and	a source of -				
	(A) Proton	(B) Neutron	(C) Meson	(D) Electron			
Q.47	When four hydrogen	nuclei fuse together to fo	rm helium nucleus, then	in this process-			
	(A) Energy is absorb	-	(B) Energy is liberated	-			
	(C) Absorption and 1	iberation of energy depen	nds upon the temperatur	e.			
	(D) Energy is neither	liberated nor absorbed.					
Q.48	Two lighter nuclei ar	e fused together to form a	a nucleus of medium atc	omic mass and energy is released in this			
	process because-						
	(A) Binding energy o	f lighter nuclei is more.	(B) Binding energy pe	er nucleon of lighter nuclei is more.			
	(C) Binding energy p	er nucleon of medium nu	cleus is more.				
	(D) Energy is always	released when two nucle	ei are fused.				

Q.49	· ·	le/used per fission in ato		
				actor and $r > 1$ in bomb.
Q.50	(C) r > 1 in both atom The nuclear fuel in the	ic reactor and bomb.	(D) r < 1 in both atom	nic reactor and bomb.
Q.30	(A) helium	(B) uranium	(C) alpha particles	(D) hydrogen
Q.51		· · /	· / - -	eloped at the moment of explosion. The
		ning from the hot region	-	
		(B) visible region	(C) infrared region	(D) x-ray region
Q.52	In nuclear fission proc	ess energy releases beca	use-	
	(A) Mass of particles i	s more than mass of nuc	leus	
				han parent fissionable material
				an parent fissionable material
		icles converts in to energ	gy	
Q.53	For nuclear fusion read		(D) I : 1, 1	• 1
	(A) Heavy nucleus are	required	(B) Light nucleus are:	required
Q.54	(C) Both type Fission of nuclei is nos	sible because the bindin	(D) None of these	them
Q.J 1		as number at low mass m		
		ss number at low mass r		
		s number at high mass n		
		ss number at high mass i		
Q.55		annot be used to get hot		
	(A) a sunny day	(B) a cloudy day	(C) a hot day	(D) a windy day
Q.56		g is not an example of a		
	(A) wood	(B) gobar-gas		(D) coal
Q.57			it stored solar energy. W	Which of the following is not ultimately
	derived from the Sun's		(C) 1	
Q.58		(B) wind energy on surface, photo electro		
Q.30	(A) The value of kinet	=	ons are ennitied. For phy	oloelectrons-
	· /	es not depend on the way	ve length of incident lig	ht
	• •	ic energy is equal to or lo		
	(D) None of the above	•••		
Q.59	The phenomenon of pl	hoto electric emission de	epends on-	
	(A) Only wave length of	of incident light	(B) Only work function	on of surface
	(C) Only nature of sur		(D) All of the above	
Q.60		the phenomenon in which		
		of a metal when it is hit		
		of the nucleus of an ator		
				frequency and intensity of incident light in a certain value which depends only on
		cident light wave and no		ara certain value which depends only off
	and mequency of the mo	havent ingitt wave and no		

		EXERCISE - 4				
MAT	CH THE COLUMN-					
Q.1	 Each question contains statements given in two columns which have to be matched. Statements (A, B column I have to be matched with statements (p, q, r, s) in column II. Match the processes given in Column I with the nuclear reactions given in Column II. Symbol Q statements (p, q, r, s) in column I with the nuclear reactions given in Column II. 					
Q.1	energy released.					
	Column I	Column II				
	(A) Alpha decay	(p) $^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3($^{1}_{0}$ n) + Q				
	(B) Beta decay	$(q) {}_{1}^{3}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + Q$				
	(C) Nuclear fission	(r) $^{230}_{90}$ Th $\rightarrow ^{226}_{90}$ Ra + $^{4}_{2}$ He + Q				
	(D) Nuclear fusion	(s) $^{137}_{55}$ Cs $\rightarrow ^{137}_{56}$ Ba + e^- + \overline{v} + Q				
Q.2	Column II give fission probability re	lative to U^{236} for nuclide given in column I match them correctly.				
	Column I	Column II				
	(A) U^{236}	(p) 0.001				
	(B) U^{239}	(q) 1				
	(C) Pu^{240}	(r) 1.5				
	(D)Am ²⁴⁴	(s) 0.0002				
Q.3	Match the processes in column I with their properties in Column II.					
	Column I	Column II				
	(A) Nuclear fission	(p) involves weak nuclear forces				
	(B) Nuclear fusion	(q) involves conversion of matter into energy				
	(C) β-decay	(r) atoms of higher atomic number are used				
	(D) Exothermic nuclear	(s) atoms of lower atomic reaction number are used				
Q.4	Match the following columns					
	Column I	Column II				
	(A) Nuclear fusion	(p) Converts some matter into energy				
	(B) Nuclear fission	(q) Generally possible for nuclei with low atomic no.				
	(C) β-decay	(r) Generally possible for nuclei with higher atomic number				
	(D) Exothermic nuclear	(s) Essentially proceeds by reaction weak nuclear forces				

ASSERTION & REASON TYPE

Each question contains STATEMENT-1 (Assertion) and STATEMENT-2 (Reason). Each question has 5 choices (A), (B), (C), (D) and (E) out of which ONLY ONE is correct.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement -1 is True, Statement-2 is False.
- (D) Statement -1 is False, Statement-2 is True.
- (E) Statement -1 is False, Statement-2 is False.
- Q.5 Statement 1 : Nuclear forces are independent of charges. Statement 2 : Nuclear force is not a central force.

- Q.6 Statement 1 : The strength of photoelectric current depends upon the intensity of incident radiation. Statement 2 : A photon of energy E (= hv) possesses a mass equal to E/c^2 and momentum equal to E/c.
- Q.7 Statement 1 : Binding energy (or mass defect) of hydrogen nucleus is zero. Statement 2 : Hydrogen nucleus contain only one nucleon.
- **Q.8** Statement 1 : U²³⁵ nucleus, by absorbing a slow neutron undergoes nuclear fission with the evolution of a significant quantity of heat

Statement 2: During nuclear fission a part of the original mass of U^{235} is lost and gets converted into heat.

Q.9 Statement 1: The rest mass energy of a nucleus is smaller than the rest mass energy of its constituent nucleons in free state.

Statement 2 : Nucleons are bound together in a nucleus.

- Q.10 Statement 1 : In a decay process of a nucleus, the mass of products is less than that of the parent. Statement 2 : The rest mass energy of the products must be less than that of the parents.
- Q.11 Statement 1: In street light circuits, photo-cells are used to switch on and off the lights automatically at dusk and dawn.

Statement 2 : A photocell can convert a change in intensity of illumination into a change in photocurrent that can be used to control lighting system.

EXERCISE - 5

PREVIOUS YEARS BOARD QUESTIONS

- Q.1 Name the process of large energy production in the sun.
- **Q.2** Why CNG considered as environmental friendly fuel?
- Q.3 Name two main combustible components of biogas.
- Q.4 Name any two elements that are used in fabricating solar cells.
- Q.5 A decoration light has red, blue, green and yellow bulbs in series, which one of them would give off light of longest and shortest wavelength ?
- Q.6 Which two components of sunlight are not visible to us?
- **Q.7** How sunlight is converted to heat in a box type solar cooker?
- Q.8 Name any one element that is used in making solar cells. On what property of the element in this use based?
- Q.9 Name the major constituent of natural gas.
- Q.10 State the energy transformation taking place when a boy is ridding a bicycle.
- Q.11 What is power? Write its S.I. unit.
- Q.12 What is the order of electric current produced by a solar cell measuring 4 cm^2 ?
- Q.13 Which component of sunlight facilitates drying of wheat during harvesting?
- Q.14 Write any two harmful radiations emitted by nuclear wastes.
- Q.15 Name any two radiations emitted by the sun that are not visible to human eye.
- Q.16 Name the component of sunlight prolonged exposure to which may cause skin cancer.
- Q.17 Mention any two harmful effects of nuclear radiations on human body.
- Q.18 Name any two semiconductors which are used in manufacture of solar cells.
- Q.19 Name the main constituents of gas.
- **Q.20** In what respect fuel oil is better than coal?
- Q.21 How many joules of energy is needed to raise the temperature of one kilogram of water through 1°C?

- Q.22 A torch cell converts one form of energy to another form. Name these forms.
- Q.23 In which form would you like to convert cow dung to maximum advantage?
- Q.24 Name the device which directly convert solar energy to electrical energy.
- Q.25 Lights from two different sources A and B have wavelength 0.3 micron and 0.7 micron respectively. Which one of the two light carry more energy per photon ?
- **Q.26** State the composition of water gas.
- Q.27 The mass number of three elements A, B and C are 2, 180 and 230 respectively. Which one of them is suitable to make a hydrogen bomb ?
- Q.28 What is the range of temperature which can be attained in a box type solar cooker in two to three hours exposure to sun.
- Q.29 Mention any two uses of wind energy.
- Q.30 Name the type of nuclear reaction by which the Sun produces its energy. List two conditions which are present at the centre of the Sun responsible for this reaction.
- Q.31 What is the cause of release of unusually large energies in nuclear fission reactions? How is the energy per fission calculated?
- Q.32 Define a 'nuclear fusion reaction'. Describe the conditions for the occurrence of a nuclear fusion reaction.
- Q.33 Give one example of a nuclear fusion reaction. Describe one method for making such reaction possible.
- Q.34 The sue of dry wood as domestic fuel is not considered as good. State two reasons for it.
- Q.35 Why burning of firewood in traditional chulhas is considered disadvantageous ? (Give two reasons)
- Q.36 In which forms the solar energy stored in the oceans? Mention any two forms that could be harnessed to obtain energy in usable form.
- Q.37 Electricity generated at hydroelectric power stations is considered to be another form of solar energy. Explain.
- Q.38 People at hill stations often get sunburns on their skin. Which component of sunlight is responsible for this ? Why is this effect not usually observed near sea level ?
- Q.39 How is biogas produced ? Which component of biogas is useful as a fuel ?
- Q.40 Name two fuels which are produced from water. Give their composition.

ANSWER KEY

EXERCISE - 1

(1) Kinetic energy (3) Solar cell.

		EXERCISE - 2		
(1) Sun	(2) 1.4kW/m^2	(3) solar cooker.	(4) electricity.	(5) wind energy
(6) kinetic	(7) 70.8%, biggest	, heat capacity, energy	(8) tidal energy	(9) geothermal
(10) Bagasse	(11) methane, hydr	ogen, hydrogen sulphide	(12) destructive dist	illation.
(13) biomass	(14) anaerobic deg	radation	(15) Infrared radiat	ions.
(16) True	(17) True	(18) False	(19) False	(20) False
(21) True	(22) True	(23) True	(24) True	(25) False

	EXERCISE - 3										
Q	1	2	3	4	5	6	7	8	9	10	11
Α	А	D	В	С	В	D	А	С	С	D	А
Q	12	13	14	15	16	17	18	19	20	21	22
Α	В	В	А	В	А	А	С	А	С	С	С
Q	23	24	25	26	27	28	29	30	31	32	33
Α	D	D	С	D	С	С	D	D	С	В	С
Q	34	35	36	37	38	39	40	41	42	43	44
Α	А	В	С	А	А	А	С	D	Α	Α	В
Q	45	46	47	48	49	50	51	52	53	54	55
Α	С	В	В	С	В	D	D	В	С	D	В
Q	56	57	58	59	60						
Α	С	С	С	D	С						

EXERCISE - 4					
(1) (A) \rightarrow r (B) \rightarrow s (C) \rightarrow p (D) \rightarrow q (2) (A) \rightarrow q (B) \rightarrow p (C) \rightarrow r (D) \rightarrow s					
(3) (A) \rightarrow q, r (B) \rightarrow q, s (C) \rightarrow p (D) \rightarrow q		(4) (A) \rightarrow p, q (B) \rightarrow p, r (C) \rightarrow s, p (D) \rightarrow p, q, r			
(5) (B)	(6) (B)	(7) (A)	(8) (A)		
(9) (A)	(10) (A)	(11) (A)			

EXERCISE - 5

(1)	Nuclear fusion reaction.	(2) CNG gas create less pollution.			
(3)	(i) Methane (ii) Hydrogen.	(4) Silicon and Germanium.			
(5)	Longest Wavelength - Red; Shortest Waveleng	h–Blue.			
(6)	Infra-red and Ultra-violet.	(8) Germanium or Silicon.			
(12)	0.4 to 0.5 volt at 6.0 mA.	(13) Infra-red radiation.			
(14)	α , β and γ rays. (Any two)	(15) Infra-red and Ultra-violet.			
(16)	Ultra-violet light.	(17) (i) Genetical disorders (ii) Skin cancer.			
(18)	Silicon and Germanium.	(21) 4180 joules.			
(23)	Biogas.	(24) Solar cell. (28) 100°C to 140°C.			
(29) (i) To produce electricity. (ii) To lift water or grind materials.					

PHYSICS FOUNDATION-X