EXERCISE

- **2.1** Two charges 5×10^{-8} C and -3×10^{-8} C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
- **2.2** A regular hexagon of side 10 cm has a charge 5 μ C at each of its vertices. Calculate the potential at the centre of the hexagon.
- **2.3** Two charges 2 μ C and -2 μ C are placed at points A and B 6 cm apart.
 - (a) Identify an equipotential surface of the system.
 - (b) What is the direction of the electric field at every point on this surface?
- **2.4** A spherical conductor of radius 12 cm has a charge of 1.6×10^{-7} C distributed uniformly on its surface. What is the electric field
 - (a) inside the sphere
 - (b) just outside the sphere
 - (c) at a point 18 cm from the centre of the sphere?
- **2.5** A parallel plate capacitor with air between the plates has a capacitance of 8 pF ($1pF = 10^{-12}$ F). What will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled with a substance of dielectric constant 6?
- **2.6** Three capacitors each of capacitance 9 pF are connected in series.
 - (a) What is the total capacitance of the combination?
 - (b) What is the potential difference across each capacitor if the combination is connected to a 120 V supply?
- **2.7** Three capacitors of capacitances 2 pF, 3 pF and 4 pF are connected in parallel.
 - (a) What is the total capacitance of the combination?
 - (b) Determine the charge on each capacitor if the combination is connected to a 100 V supply.
- **2.8** In a parallel plate capacitor with air between the plates, each plate has an area of 6×10^{-3} m² and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?
- **2.9** Explain what would happen if in the capacitor given in Exercise 2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,
 - (a) while the voltage supply remained connected.
 - (b) after the supply was disconnected.
- **2.10** A 12pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?
- 2.11 A 600pF capacitor is charged by a 200V supply. It is then disconnected from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process?

	classmate
	Date
	Exercise
	33 HERE RIS 100 521 , RES 111 56 . 1. 21 C
31	Hore E= 12V, r= 0.40
-	The current drawn from the battery will be max
	when the external resistance in the circuit is
	zoro R=0
	$\frac{1}{r} = \frac{12}{0.4} = 30A$
	r 0.4
3.2	As $T = E \Rightarrow R_{+}r = E$
	Rtr
	$\frac{R}{R} = \frac{R}{R} = \frac{10}{0.5} = 17 \Omega$
	T O.S Hampan A
	Terminal voltage,
	V= IR=0.5×17=8.5V
	Repetively PERALSONALON
50	i) $R_S = R_1 + R_2 + R_3 = 6 \Omega$
	ii) current in the circuit, I= E, 12 - 2A R G
	. Potential drop across different resistors are
	$V_1 = \hat{T}R_1 = 2 \times 1 = 2 \vee$
	$V_{Q} = IR_{2} = 2X R = U V$
	$V_3 = IR_3 = R \times 3 = 6V$
	Riltzeta)
3.4	$\frac{1}{R_{P}} \frac{1}{R_{1}} \frac{1}{R_{P}} \frac{1}{R_{3}} = \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{5} = \frac{19}{20} \frac{1}{5}$
1	
	ii) current drawn through different resistors are
	$\frac{1}{2} = \frac{20}{2} = 10 \text{ A}, \frac{1}{2} = \frac{20}{2} = 5 \text{ A},$
	01/200.0
	T3 = E = R9 - MA R3 S
~	
	Total current drawn from the battery,
	$1: 1+12+1_3 = 10+5+4=1919$

CLASSMAT. Here RI= 100 52, Re: 11752, LI= 27°C 3.5 Q= 1.70 × 10-4° c' Jongotza As a: Ro-RI $R_1(t_2-t_1)$ - · t2-t1 = R2-R1 = 117 -100 = 1000 RIX 100×1.70×10-7 - t2=1000 + t, = 1000+27 = 1027 C 3.6 Here 1= 15m, A= 6.0×10-7m?, R= 5.0.2 Respectively P=RA, S:DX6.0×10⁷ L 15 R1=2.10, t1=27-5°C, R2=2.70, t2=100°C 3.7 Pemperature coefficient of resistivity of silver, X = R2-R1 $R_1(t_2-t_1)$ = 2.7 - 2.1 0.6 2.1 (100-27.5) 2.1 ×72.5 = 0.00394°C-1

Be there
$$v = 830 v$$
, $D_1 = 3.28$.
Part 2.80, $a = 1.70 \times 10^{40} c^{-1}$
Resistance at room temperature,
R_1 = $v = 230 = 71.875a$
 $T_1 = 3.3$
Resistance of steady temperature,
 $R_2 = v = 2.30 = 72.17352$
 $T_2 = 2.8$
Now $a = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_2 - R_1$
 $R_1(t_2 - t_1)$
 $\therefore t_2 - t_1 = R_1 - R_1$
 $\therefore t_2 - t_1 = R_1 - R_1$
 $\therefore t_2 - guo .25 + R_1 = 867 - 35^{-1} - R_1 - R_3$
 $R_1 = R_1 - R_1 -$

Prom loop ABDA.
103.
$$+57_{0}-57_{2}=0$$

For loop BCDB.
 $5(1.75)\cdot10(1.12)\cdot10$
 $5(2.10(1.22))\cdot10(1.12)\cdot10$
 $3(2.1)\cdot57_{2.1}+57_{3.2}=0$
 $52.10(1.22)\cdot10(1.12)\cdot10$
 $3(2.1)\cdot57_{2.1}+57_{3.2}=0$
 $51.10(1.22)\cdot10(1.22)\cdot10$
 $51.10(1.22)\cdot10(1.22)\cdot10$
 $51.10(1.22)\cdot10(1.22)\cdot10$
 $51.10(1.22)\cdot10(1.22)\cdot10$
 $50.10(1.22)\cdot10(1.22)\cdot10$
 $50.10(1.22)\cdot10(1.22)\cdot10$
 $10(1.12)\cdot10(1.22)\cdot10(1.22)\cdot10$
 $10(1.12)\cdot10(1.22)\cdot10(1.$

	classmate Date Page
3.10	Here 7=35.9cm, R=X=7, S=Y=12.50
	AS S= 100-1 xR 12.5 - 100-39.5 xR
	1 39.5
	or R=12.5×395=8.162
	60.5 . Mail ait and phase
	connection are maid made by thich copper
	stick to minimise the resistances of connections
	which are not accounted for in the above
	formula.
ii)	When x & Y are interchanged
,	$R: Y: 12.5 \Omega$, $S: X: 8.16 \Omega$, $l: ?$
	AS. S= 100-L XR :
	= 8.161=1250-12.50
	= 1= 1250 = 60.5 D, From the end A.
	R0.66
0.	and hellen of so walt is ababad
3.11	when the storage buttery of 8.0 volt is charged with a dc supply of 120 v, the net emf in the
	circuit will be E'= 120-8.0 = 112V
	current in the circuit during charging
	$\frac{f}{f} = \frac{g}{f} = \frac{112}{155105} = \frac{17}{16}$
	Rtr 15,5+0.5 De Language wallage of the battery during
	The terminal voltage of the battery during charging,
	$V = E + IV = 8.047 \times 0.5 = 11.5V$
	The sories resistor limits the current drawn
	from the external source. In its absence,
	the current will be dangerously high.